Closantel is an allosteric inhibitor of human Taspase1.

iScience

Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Street 9, 60438 Frankfurt/Main, Germany.

Published: December 2021

Dimerization of Taspase1 activates an intrinsic serine protease function that leads to the catalytic Thr234 residue, which allows to catalyze the consensus sequence QXD⋅GXDD, present in Trithorax family members and TFIIA. Noteworthy, Taspase1 performs only a single hydrolytic step on substrate proteins, which makes it impossible to screen for inhibitors in a classical screening approach. Here, we report the development of an HTRF reporter assay that allowed the identification of an inhibitor, Closantel sodium, that inhibits Taspase1 in a noncovalent fashion (IC = 1.6 μM). The novel inhibitor interferes with the dimerization step and/or the intrinsic serine protease function of the proenzyme. Of interest, Taspase1 is required to activate the oncogenic functions of the leukemogenic AF4-MLL fusion protein and was shown in several studies to be overexpressed in many solid tumors. Therefore, the inhibitor may be useful for further validation of Taspase1 as a target for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8661544PMC
http://dx.doi.org/10.1016/j.isci.2021.103524DOI Listing

Publication Analysis

Top Keywords

intrinsic serine
8
serine protease
8
protease function
8
taspase1
6
closantel allosteric
4
inhibitor
4
allosteric inhibitor
4
inhibitor human
4
human taspase1
4
taspase1 dimerization
4

Similar Publications

Dehydrins (Dhns) are a group of intrinsically disordered land plant proteins that are closely associated with tolerance of dehydrative stress. Dhns are recognized and classified by the presence and sequence of five different conserved segments, varying in length from 8 to 15 residues, separated by highly variable disordered regions. In addition to one or more copies of the diagnostic, fifteen-residue K segment, most Dhns can be classified into one of three major groups based on the mutually exclusive presence of three other conserved segments (H, Y, or F), with all three groups typically incorporating multi-serine S segments.

View Article and Find Full Text PDF

Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield.

Environ Res

January 2025

Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:

Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition.

View Article and Find Full Text PDF

Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2' Amino Acid Replacements.

Toxins (Basel)

January 2025

Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.

Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy.

View Article and Find Full Text PDF

Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex.

Cells

January 2025

IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!