Extracellular vesicles (EVs) are capable of transferring cargo from donor to recipient cells, but precisely how cargo content is regulated for export is mostly unknown. For miRNA cargo, we previously showed that when compared to isogenic colorectal cancer (CRC) cells expressing wild-type KRAS, a distinct subset of miRNAs are differentially enriched in EVs from KRAS mutant active CRC cells, with being one of the most enriched. The mechanisms that could explain how and other miRNAs are differentially exported into EVs have not been fully elucidated. Here, we tested the effect of N-methyladenosine (mA) modification on miRNA export into EVs by depletion of METTL3 and ALKBH5, a writer and eraser of mA modification, respectively. While the effects of ALKBH5 knockdown were quite modest, decreased levels of METTL3 led to reduced cellular and extracellular levels of a subset of miRNAs that contain consensus sequences for mA modification. Functional testing of EVs prepared from cells expressing shRNAs against METTL3 showed that they were less capable of conferring colony growth in 3D to wild-type KRAS cells and were also largely incapable of conferring the spread of cetuximab resistance. Our data support a role for METTL3 modification on cellular miRNA levels and export of specific miRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654799 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08519 | DOI Listing |
J Mol Cell Biol
January 2025
Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that m6A methylation was essential for the survival of colonic stem cells. Here, we show that METTL3 expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.
Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2024
Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent and aggressive tumor. Sorafenib is the first-line treatment for patients with advanced HCC, but resistance to sorafenib has become a significant challenge in this therapy. Cancer stem cells play a crucial role in sorafenib resistance in HCC.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China. Electronic address:
Esophageal cancer is a major malignancy with a high incidence and poor prognosis. To elucidate the mechanisms underlying its progression, particularly with respect to cell division and spindle orientation, we investigated the role of m6A modifications and the centrosomal protein CEP170. Using m6A-seq and RNA-seq of esophageal cancer tissues and adjacent normal tissues, we identified significant alterations in m6A modifications and gene expression, highlighting the upregulation and m6A enrichment of CEP170 in tumor tissues.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
Acute kidney injury (AKI) is a prevalent clinical syndrome with high morbidity and mortality. Accumulating studies suggest mitochondrial dysfunction as the typical characteristics and key process of AKI, but the underlying mechanism remains elusive. The YME1-like 1 (YME1L1) ATPase, an inner mitochondrial membrane protein, is screened and identified to be downregulated in renal tubular epithelial cells of various mouse models and patients of AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!