In SF insulated high-voltage gas power systems, HO is the most problematic impurity which not only decreases insulation performance but also creates an acidic atmosphere that promotes corrosion. Corrosion damages electrical equipment and leads to leaks, which pose serious safety hazards to people and the environment. A QEPAS-based sensor system for the sub-ppm level HO detection in SF buffer gas was developed by use of a near-infrared commercial DFB diode laser. Since the specific physical constants of SF are strongly different from that of N or air, the resonant frequency and -factor of the bare quartz tuning fork (QTF) had changed to 32,763 Hz and 4173, respectively. The optimal vertical detection position was 1.2 mm far from the QTF opening. After the experimental optimization of acoustic micro-resonator (AmR) parameters, gas pressures, and modulation depths, a detection limit of 0.49 ppm was achieved for an averaging time of 1 s, which provided a powerful prevention tool for the safety monitoring in power systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654977 | PMC |
http://dx.doi.org/10.1016/j.pacs.2021.100319 | DOI Listing |
BMC Nurs
January 2025
The First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning Province, China.
Background: Self-management is regarded as a crucial factor influencing the effectiveness of home-based cardiac rehabilitation for patients with coronary heart disease. In nursing practice, nurses employ a variety of strategies to enhance self-management of patients. However, there exists a disparity in nurses' perceptions and practical experiences with these strategies.
View Article and Find Full Text PDFNat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
This study investigates the optimization of wind energy integration in hybrid micro grids (MGs) to address the rising demand for renewable energy, particularly in regions with limited wind potential. A comprehensive assessment of wind energy potential was conducted, and optimal sizing of standalone MGs incorporating photovoltaic (PV) systems, wind turbines (WT), and battery storage (BS) systems was performed for six regions in the Kingdom Saudi Arabia. Wind resource analysis utilizing the Weibull distribution function shows that all regions exhibited Class 1 wind energy characteristics, with average annual wind power densities ranging from 36.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
Inflammatory bowel disease (IBD) is a multisystem condition that could affect the cutaneous systems, namely cutaneous extraintestinal manifestations (EIMs). It has been suggested that IBD is associated with erythema nodosum (EN), malignant melanoma (MM) and non-melanoma skin cancer (NMSC). However, the potential causal relationship between IBD and the mentioned above cutaneous EIMs is still unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
This paper proposes an advanced Load Frequency Control (LFC) strategy for two-area hydro-wind power systems, using a hybrid Long Short-Term Memory (LSTM) neural network combined with a Genetic Algorithm-optimized PID (GA-PID) controller. Traditional PID controllers, while extensively used, often face limitations in handling the nonlinearities and uncertainties inherent in interconnected power systems, leading to slower settling time and higher overshoot during load disturbances. The LSTM + GA-PID controller mitigates these issues by utilizing LSTM's capacity to learn from historical data by using gradient descent to forecast the future disturbances, while the GA optimizes the PID parameters in real time, ensuring dynamic adaptability and improved control precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!