The emerging threat of atmospheric microplastic pollution has prompted researchers to study areas previously considered beyond the reach of plastic. Investigating the range of atmospheric microplastic transport is key to understanding the global extent of this problem. While atmospheric microplastics have been discovered in the planetary boundary layer, their occurrence in the free troposphere is relatively unexplored. Confronting this is important because their presence in the free troposphere would facilitate transport over greater distances and thus the potential to reach more distal and remote parts of the planet. Here we show evidence of 0.09-0.66 microplastics particles/m over 4 summer months from the Pic du Midi Observatory at 2877 meters above sea level. These results exhibit true free tropospheric transport of microplastic, and high altitude microplastic particles <50 µm (aerodynamic diameter). Analysis of air/particle history modelling shows intercontinental and trans-oceanic transport of microplastics illustrating the potential for global aerosol microplastic transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692471PMC
http://dx.doi.org/10.1038/s41467-021-27454-7DOI Listing

Publication Analysis

Top Keywords

free tropospheric
8
transport microplastic
8
pic midi
8
midi observatory
8
atmospheric microplastic
8
free troposphere
8
microplastic
5
evidence free
4
tropospheric long-range
4
transport
4

Similar Publications

Aerosol transport and associated boundary layer thermodynamics under contrasting synoptic conditions over a semiarid site.

Sci Total Environ

January 2025

Department of Geosciences, Atmospheric Science Division, Texas Tech University, Lubbock, TX, USA; National Wind Institute, Texas Tech University, Lubbock, TX, USA. Electronic address:

Understanding the kinematics of aerosol horizontal transport and vertical mixing near the surface, within the atmospheric boundary layer (ABL), and in the overlying free troposphere (FT) is critical for various applications, including air quality and weather forecasting, aviation, road safety, and dispersion modeling. Empirical evidence of aerosol mixing processes within the ABL during synoptic-scale events over arid and semiarid regions (i.e.

View Article and Find Full Text PDF

Particle-bound mercury (PBM) concentrations in particulate matter (PM), PM10 and PM2.5, were investigated during dust and non-dust events at urban and rural sites in Cabo Verde, Africa. During dust events, PBM averaged 35.

View Article and Find Full Text PDF

Formaldehyde (HCHO), a major carbonyl compound in urban air, poses health risks due to its carcinogenic properties. However, the role of FT-PBL exchange in HCHO and the importance of vertical exchange on diurnal variations in HCHO remain unclear. This study investigated the diurnal variability of HCHO in Seoul's planetary boundary layer (PBL) during cold.

View Article and Find Full Text PDF

Hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are the leading synthetic replacements for compounds successively banned by the Montreal Protocol and amendments. HFOs and HCFOs readily decompose in the atmosphere to form fluorinated carbonyls, including CFCHO in yields of up to 100%, which are then photolyzed. A long-standing issue, critical for the transition to safe industrial gases, is whether atmospheric decomposition of CFCHO yields any quantity of CHF (HFC-23), which is one of the most environmentally hazardous greenhouse gases.

View Article and Find Full Text PDF

Tropospheric ozone (O) is among the most pervasive and harmful air pollutants known to affect ecosystems. In the United States, the Environmental Protection Agency and other agencies are tasked with protecting plants and ecosystems from harmful O exposures. Controlled exposure experiments conducted in field open-top chambers (OTCs) with small tree seedlings have been used to estimate empirical models of tree growth in response to O exposure for more than 16 species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!