A method of extracting extracellularly recorded action potentials from background electronic noise is described. Segments of traces containing stimulus-induced activity are Fourier transformed and the increase in the total power density over that of control noise segments is used as a measure of stimulus-induced neuronal activity. We show first, with observations from the amphibian visual system and mammalian auditory system, that our technique yields similar quantitative information to that obtained from the conventional spike counting method when the recording arrangement is optimal. Moreover, the size and centre of a visual receptive field can be determined even when the evoked action potentials are buried in the background noise. To investigate the potential of this technique further, we have used it to study the auditory responses in the amphibian midbrain. The power spectral density, we demonstrate here, is proportional to the stimulus intensity over a wide range, and varies systematically with stimulus frequency and the direction of sound source. Other possible applications of this technique, together with the theoretical basis for it, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0165-0270(87)90027-6DOI Listing

Publication Analysis

Top Keywords

neuronal activity
8
action potentials
8
signal processing
4
technique
4
processing technique
4
technique extract
4
extract neuronal
4
noise
4
activity noise
4
noise method
4

Similar Publications

Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.

View Article and Find Full Text PDF

Sympathetic nerves regulate nearly all human organs. Their peripheral nerves are present in tumor tissue. Activation of the sympathetic nervous system promotes malignant transformation in several cancers.

View Article and Find Full Text PDF

Oligodendrocyte precursor cells facilitate neuronal lysosome release.

Nat Commun

January 2025

Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.

Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes.

View Article and Find Full Text PDF

Rapid acclimatization to baseline stimulation with a multi-canal vestibulocochlear implant.

Eur Arch Otorhinolaryngol

January 2025

Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.

Purpose: It is hypothesized that a vestibular implant should re-establish baseline activity of the ampullary nerves. Use of a constant baseline stimulation potentially allows encoding of bi-directional head movements, through the addition of signal modulations. Effective stimulation of the vestibular nerves depends on the ability to acclimate to this baseline signal.

View Article and Find Full Text PDF

The α- to γ-enolase switch: The role and regulation of γ-enolase during oligodendrocyte differentiation.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia. Electronic address:

The glycolytic enzyme γ-enolase is a highly specific neuronal marker that is known to replace ubiquitously expressed α-enolase in the brain. Moreover, γ-enolase has been shown to exert neurotrophic activity, which is regulated by cathepsin X, a lysosomal peptidase. This study investigates the role of γ-enolase and its regulation by cathepsin X during the differentiation of oligodendrocytes, which are essential for normal brain function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!