Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles.

Dent Mater

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea. Electronic address:

Published: February 2022

Objective: This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria.

Materials And Methods: Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant.

Results: Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05).

Significance: Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2021.12.019DOI Listing

Publication Analysis

Top Keywords

copper doped
8
doped bioglass
8
bioglass nanoparticles
8
mechanophysical properties
8
dental pulp
8
pulp human
8
human cells
8
investigating mechanophysical
4
mechanophysical biological
4
biological characteristics
4

Similar Publications

This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.

View Article and Find Full Text PDF

Enhanced Leachate concentrate degradation Across Variable pH Ranges Using Cu@ATP-CTS Fenton-like Catalysts for H₂O₂ Activation.

Environ Res

December 2024

College of Environmental Science and Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.

Landfill leachate nanofiltration concentrates (LLNC) contain complex organic pollutants that are difficult to treat. This study developed a copper-doped attapulgite-chitosan composite catalyst (Cu@ATP-CTS) for efficient LLNC degradation in a Fenton-like system. The incorporation of attapulgite extended the effective pH range of Fenton reactions from 2 to 8, overcoming traditional limitations.

View Article and Find Full Text PDF

Multifunctional selenium-doped carbon dots for modulating Alzheimer's disease related toxic ions, inhibiting amyloid aggregation and scavenging reactive oxygen species.

Int J Biol Macromol

December 2024

Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China. Electronic address:

β-Amyloid (Aβ) protein deposition, oxidative stress, and metal ion imbalance are established pathological features of Alzheimer's disease (AD), highlighting the imperative to efficiently reduce Aβ aggregates formation, alleviate oxidative stress, and chelate metal ions. Existing research indicates the necessity of developing multifunctional nanomaterials to facilitate multi-target therapy. In this work, we designed and prepared multifunctional selenium-doped carbonized polymer dots (SeCDs), and examined the multifunctionality at inhibiting Aβ, cleaning reactive oxygen species (ROS), and modulating copper ions.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

Anion modulation enhances the internal electric field of CuCoO to improve the catalysis in ammonia borane hydrolysis.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:

Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!