Microalgal Activity and Nutrient Uptake from Wastewater Enhanced by Nanoscale Zerovalent Iron: Performance and Molecular Mechanism.

Environ Sci Technol

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.

Published: January 2022

Microalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth. In this study, a novel approach was proposed to simultaneously promote microalgal activity and nutrient uptake from wastewater using nanoscale zerovalent iron (nZVI), and the underlying molecular mechanism was explored. Compared to the control, 0.05 mg/L of nZVI significantly enhanced biomass production by 113.3% as well as NH-N and PO-P uptake rates by 32.2% and 75.0%, respectively. These observations were attributed to the enhanced metabolic pathways and intracellular regulations. Specifically, nZVI alleviated the cellular oxidative stress via decreased peroxisome biogenesis as indicated by reduced reactive oxygen species, enzymes, and genes involved. nZVI promoted ammonium assimilation, phosphate metabolism, carbon fixation, and energy generation. Moreover, nZVI regulated the biosynthesis and conversions of intracellular biocomposition, leading to increased carotenoid, carbohydrate, and lipid productions and decreased protein and fatty acid yields. The above metabolisms were supported by the regulations of differentially expressed genes involved. This study provided an nZVI-based approach and molecular mechanism for enhancing microalgal activities and nutrient uptake from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c05503DOI Listing

Publication Analysis

Top Keywords

nutrient uptake
12
uptake wastewater
12
molecular mechanism
12
microalgal activity
8
activity nutrient
8
nanoscale zerovalent
8
zerovalent iron
8
microalgal activities
8
genes involved
8
wastewater
5

Similar Publications

Metabolic reprogramming of tumor cells dynamically reshapes the distribution of nutrients and signals in the tumor microenvironment (TME), affecting intercellular interactions and resulting in metabolic immune suppression. Increased glucose uptake and metabolism are characteristic of many tumors. Meanwhile, the progression of colorectal carcinoma (CRC) relies on lipid metabolism.

View Article and Find Full Text PDF

The interaction of nutrient uptake with biotic and abiotic stresses in plants.

J Integr Plant Biol

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency.

View Article and Find Full Text PDF

Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules.

View Article and Find Full Text PDF

Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.

View Article and Find Full Text PDF

Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!