A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption. | LitMetric

Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption.

J Environ Manage

School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; School of Science, Tibet University, Lhasa, 850000, China. Electronic address:

Published: February 2022

A magnetic nitrogen-doped sludge-based biochar (NAlSB-Fe-Si) was prepared based on waterworks sludge for raw material and dicyandiamide for nitrogen source to adsorb methylene blue (MB) from water. And the magnetic particles loaded on the adsorbent were obtained through functionalizing iron and silicon ions which were extracted from the biochar by acid and alkali impregnation. Physicochemical properties of sludge-based biochar (SB) were analyzed by SEM, BET, FTIR, XRD, XPS and VSM. Compared with the original biochar, NAlSB-Fe-Si had richer pore structure and higher pore volume, and the SiO and FeO loading made the specific surface area increased by 200%. Possible adsorption mechanism was proposed by exploring the initial pH, MB concentration and reaction time. Results revealed that alkaline environment was more conducive to the rapid removal of cationic dyes such as MB. Pseudo-second-order kinetic model and intra-particle diffusion model could describe the adsorption behavior of MB on NAlSB-Fe-Si. The fitting results of Langmuir model showed that adsorption temperature is positively correlated with adsorption capacity, and the maximum adsorption capacity of MB on nitrogen-doped sludge-based biochar (NSB) and NAlSB-Fe-Si at 25 °C was 26.47 and 300.36 mg/g, respectively. Finally, the MB removal rate of NAlSB-Fe-Si could still reach 70% after four cycles, indicating that the composite was an efficient cationic dye adsorbent, and its preparation could be regarded as a way of resource utilization of waterworks sludge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.114297DOI Listing

Publication Analysis

Top Keywords

waterworks sludge
12
sludge-based biochar
12
methylene blue
8
nitrogen-doped sludge-based
8
biochar nalsb-fe-si
8
adsorption capacity
8
biochar
6
adsorption
6
nalsb-fe-si
5
multi-step preparation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!