Dynamic stem cell selection safeguards the genomic integrity of the epidermis.

Dev Cell

Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Division of Aging and Regeneration, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. Electronic address:

Published: December 2021

Maintaining genomic integrity and stability is crucial for life; yet, no tissue-driven mechanism that robustly safeguards the epithelial genome has been discovered. Epidermal stem cells (EpiSCs) continuously replenish the stratified layers of keratinocytes that protect organisms against various environmental stresses. To study the dynamics of DNA-damaged cells in tissues, we devised an in vivo fate tracing system for EpiSCs with DNA double-strand breaks (DSBs) and demonstrated that those cells exit from their niches. The clearance of EpiSCs with DSBs is caused by selective differentiation and delamination through the DNA damage response (DDR)-p53-Notch/p21 axis, with the downregulation of ITGB1. Moreover, concomitant enhancement of symmetric cell divisions of surrounding stem cells indicates that the selective elimination of cells with DSBs is coupled with the augmented clonal expansion of intact stem cells. These data collectively demonstrate that tissue autonomy through the dynamic coupling of cell-autonomous and non-cell-autonomous mechanisms coordinately maintains the genomic quality of the epidermis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2021.11.018DOI Listing

Publication Analysis

Top Keywords

stem cells
12
genomic integrity
8
cells
6
dynamic stem
4
stem cell
4
cell selection
4
selection safeguards
4
safeguards genomic
4
integrity epidermis
4
epidermis maintaining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!