A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonparametric inference of the area under ROC curve under two-phase cluster sampling. | LitMetric

Nonparametric inference of the area under ROC curve under two-phase cluster sampling.

J Biopharm Stat

Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida, USA.

Published: March 2022

Nonparametric inference of the area under ROC curve (AUC) has been well developed either in the presence of verification bias or clustering. However, current nonparametric methods are not able to handle cases where both verification bias and clustering are present. Such a case arises when a two-phase study design is applied to a cohort of subjects (verification bias) where each subject might have multiple test results (clustering). In such cases, the inference of AUC must account for both verification bias and intra-cluster correlation. In the present paper, we propose an IPW AUC estimator that corrects for verification bias and derive a variance formula to account for intra-cluster correlations between disease status and test results. Results of a simulation study indicate that the method that assumes independence underestimates the true variance of the IPW AUC estimator in the presence of intra-cluster correlations. The proposed method, on the other hand, provides a consistent variance estimate for the IPW AUC estimator by appropriately accounting for correlations between true disease statuses and between test results.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10543406.2021.2009501DOI Listing

Publication Analysis

Top Keywords

verification bias
20
ipw auc
12
auc estimator
12
nonparametric inference
8
inference area
8
area roc
8
roc curve
8
bias clustering
8
intra-cluster correlations
8
auc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!