Fungus Polygalacturonase-Generated Oligogalacturonide Restrains Fruit Softening in Ripening Tomato.

J Agric Food Chem

Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.

Published: January 2022

Fruit softening exacerbates mechanical damage incurred during shipping and handling and the increase in pathogen susceptibility. Here, oligogalacturonides (OGs) produced by fungal polygalacturonase (PG) delayed fruit softening in tomato and maintained fruit firmness at 8.37 ± 0.45 N at 13 d of storage, which was consistent with the fruit firmness level of 5 d in the control groups. From RNA sequencing data in line production of phytohormones, we confirmed ethylene and jasmonic acid signals, the MAPK signaling cascade, and calmodulin involved in the OG-mediated firmness response of whole fruit. , , and were the major contributing factors for fruit softening, and their expression decreased continuously upon OG application. Suppression of the expression of ethylene response factors using a virus-induced gene-silencing strategy revealed that was negatively involved in OG-restrained fruit softening. Taken together, these results indicated that fungal PG-generated OGs have potential application value in controlling tomato fruit softening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.1c04972DOI Listing

Publication Analysis

Top Keywords

fruit softening
24
fruit
9
tomato fruit
8
fruit firmness
8
softening
6
fungus polygalacturonase-generated
4
polygalacturonase-generated oligogalacturonide
4
oligogalacturonide restrains
4
restrains fruit
4
softening ripening
4

Similar Publications

Fruit firmness is a critical attribute for evaluating the quality of peaches and nectarines. The precise measurement of fruit firmness plays a key role in maturity assessment, determining harvest periods, and predicting shelf-life. Texture analyzers are increasingly employed for accurate fruit firmness measurement, offering advantages in reducing operator errors compared to the traditional Magness-Taylor test.

View Article and Find Full Text PDF

Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples.

Mol Hortic

January 2025

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years.

View Article and Find Full Text PDF

Jamun (Syzygium cumini L. Skeels), a less recognized, underutilized, and highly perishable fruit is a delicacy of tropical regions. Soft pulp and thin exocarp make these small purple berries susceptible to mechanical injury and several postharvest diseases.

View Article and Find Full Text PDF

DkGASA4 plays a role in the postharvest softening of persimmon fruit regulated by gibberellin.

Plant Physiol Biochem

January 2025

Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China; Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China. Electronic address:

Gibberellin (GA) is one of the crucial plant hormones involved in fruit ripening regulation. GASA genes, which respond to GA and encode cysteine-rich peptides, are prevalent in plants. While the GASA gene family has been identified in various plants, its role in persimmon fruit ripening remains unclear.

View Article and Find Full Text PDF

Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review.

Compr Rev Food Sci Food Saf

January 2025

Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Transitioning to safe, nonthermal, and edible strategies for maintaining fruit and vegetable (F&V) quality, reducing postharvest losses (up to 55% annually), and ensuring food security requires extensive research and innovation in postharvest technologies. This review aims to provide an updated understanding of edible coatings or films (ECF), focusing on their role in reducing F&V postharvest losses, based on data from the last 40 years retrieved from the Web of Science database. The global ECF research network is represented by publication trends, majorly researched F&V, key research areas, influential and emerging authors, and global research ranking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!