Mounting epidemiological evidence has documented the associations between long-term exposure to multiple air pollutants and increased mortality. There is a pressing need to determine whether risks persist at low concentrations including below current national standards. Air pollution levels have decreased in the United States, and better understanding of the health effects of low-level air pollution is essential for the amendment of National Ambient Air Quality Standards (NAAQS). A nationwide, population-based, open cohort study was conducted to estimate the association between long-term exposure to low-level PM, NO, O, and all-cause mortality. The study population included all Medicare enrollees (ages 65 years or older) in the contiguous U.S. from 2001 to 2017. We further defined three low-exposure subcohorts comprised of Medicare enrollees who were always exposed to low-level PM (annual mean ≤12-μg/m), NO (annual mean ≤53-ppb), and O (warm-season mean ≤50-ppb), respectively, over the study period. Of the 68.7-million Medicare enrollees, 33.1% (22.8-million, mean age 75.9 years), 93.8% (64.5-million, mean age 76.2 years), and 65.0% (44.7-million, mean age 75.6 years) were always exposed to low-level annual PM, annual NO, and warm-season O over the study period, respectively. Among the low-exposure cohorts, a 10-μg/m increase in PM, 10-ppb increase in NO, and 10-ppb increase in warm-season O, were, respectively, associated with an increase in mortality rate ranging between 10 and 13%, 2 and 4%, and 12 and 14% in single-pollutant models, and between 6 and 8%, 1 and 3%, and 9 and 11% in tripollutant models, using three statistical approaches. There was strong evidence of linearity in concentration-response relationships for PM and NO at levels below the current NAAQS, suggesting that no safe threshold exists for health-harmful pollution levels. For O, the concentration-response relationship shows an increasingly positive association at levels above 40-ppb. In conclusion, exposure to low levels of PM, NO, and warm-season O was associated with an increased risk of all-cause mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300621 | PMC |
http://dx.doi.org/10.1021/acs.est.1c03653 | DOI Listing |
PLoS One
January 2025
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Environ Monit Assess
January 2025
Municipal Budgetary Educational Institution "Lyceum of the City of Yurga", St. Kirova, 7, Yurga, Kemerovo Region, 652055, Russia.
In Kemerovo Region (Kuzbass, Southwest Siberia), there is the largest coal basin in Russia and one of the largest in the world. Active moss biomonitoring was applied to assess the impact of potentially toxic elements on air pollution in five urban areas of the region. In each of the chosen urban regions, the moss bags were exposed in November and December of 2022 at locations with varying degrees of anthropogenic pressure.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria.
This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.
View Article and Find Full Text PDFArch Microbiol
January 2025
Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!