Sulfur Functionalization via Epoxide Ring Opening on a Reduced Graphene Oxide Surface to Form Metal (II) Organo-bis-[1,2]-oxathiin.

Inorg Chem

Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

Published: January 2022

The epoxide ring-opening reaction in graphene oxide (GO) by nucleophiles is a very fascinating and advanced methodology to develop novel functional material. Herewith, we report an advanced strategy for opening the epoxide ring on the rGO surface via easily an available nucleophile (NaS), which is further functionalized with O atom to obtain four-membered rings (FMRs). The Cd coordination with the S atom puts extra stress on the FMR leading to the C-C bond cleavage of the four-membered heteroatomic rings on the rGO surface. This strategic approach leads to the fabrication of an innovative metal (II) organo-bis-[1,2]-oxathiin (MOBOT) chemical moiety (M = Cd, Zn). The MOBOT compound further shows enhanced H generation activity and hence is promising as a potential photocatalyst for solar hydrogen generation. This compound might also be a potential candidate for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02819DOI Listing

Publication Analysis

Top Keywords

epoxide ring
8
graphene oxide
8
metal organo-bis-[12]-oxathiin
8
rgo surface
8
sulfur functionalization
4
functionalization epoxide
4
ring opening
4
opening reduced
4
reduced graphene
4
oxide surface
4

Similar Publications

The growing pursuit of carbon circularity in material fabrication has led to the increased use of recycled and biobased resources, especially in epoxy resin systems. Fossil-based bisphenols are being replaced with recycled bisphenol A (r-BPA) and lignin derivatives, both derived from previous processes. In this study, r-BPA was chemically recycled from end-of-life televisions, then converted into r-DGEBA and r-DAGBA through glycidylation and acrylic acid ring-opening.

View Article and Find Full Text PDF

Differences in Rejuvenation Mechanisms and Physical Properties of Aged Styrene-Butadiene-Styrene (SBS)-Modified Bitumen by Mono-Epoxy and Di-Epoxy Compounds.

Polymers (Basel)

December 2024

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.

Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.

View Article and Find Full Text PDF

Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation.

View Article and Find Full Text PDF

Novel neo-clerodane diterpenoids from Teucrium quadrifarium and their anti-ferroptosis effect.

Nat Prod Bioprospect

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China.

Teucrifarides A-D (1-4), four previously unreported neo-clerodane-type diterpenoids, combined with sixteen known analogs (5-20), were purified from Teucrium quadrifarium. The absolute forma of compounds 1-4 were determined via spectroscopic and ECD calculation methods, together with X-ray crystallography experiments. Among them, compound 1 possessed a 5,20-epoxy ring featuring a unique cage-like 12-oxatricyclo [5.

View Article and Find Full Text PDF

High-Rate 4.2 V Solid-State Potassium Batteries by In Situ Polymerized Epoxide Ether Electrolyte.

Nano Lett

January 2025

College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.

Article Synopsis
  • Solid-state metallic potassium batteries (SSMPBs) are gaining attention as alternatives to lithium batteries, but face challenges like low ionic conductivity and high interfacial resistance.
  • Researchers achieved improved performance by using in situ ring-opening polymerization with a plasticizer and catalyst, resulting in short-chain polyether electrolytes that significantly enhance ionic conductivity.
  • The developed SSMPBs show a high discharge capacity of 69 mAh/g at 100 mA/g and 88.8% capacity retention after 100 cycles, outperforming previous SSMPB studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!