The present study characterized aresenate reductase of Bacillus thuringiensis KPWP1, tolerant to salt, arsenate and a wide range of pH during growth. Interestingly, it was found that arsC, arsB and arsR genes involved in arsenate tolerance are distributed in the genome of strain KPWP1. The inducible arsC gene was cloned, expressed and the purified ArsC protein showed profound enzyme activity with the K and K values as 25 µM and 0.00119 s, respectively. In silico studies revealed that in spite of 19-26% differences in gene sequences, the ArsC proteins of Bacillus thuringiensis, Bacillus subtilis and Bacillus cereus are structurally conserved and ArsC structure of strain KPWP1 is close to nature. Docking and analysis of the binding site showed that arsenate ion interacts with three cysteine residues of ArsC and predicts that the ArsC from B. thuringiensis KPWP1 reduces arsenate by using the triple Cys redox relay mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-021-02660-5DOI Listing

Publication Analysis

Top Keywords

bacillus thuringiensis
12
thuringiensis kpwp1
12
reductase bacillus
8
kpwp1 tolerant
8
tolerant salt
8
wide range
8
strain kpwp1
8
arsc
7
arsenate
5
bacillus
5

Similar Publications

Transgenic corn (Zea mays L.) expressing insecticidal toxins from Bacillus thuringiensis (Bt) helps to control or suppress injury from a range of target insect pests. This study summarizes the yield benefits of Bt corn from field trials in Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2023.

View Article and Find Full Text PDF

Double trouble? Quantifying the risk from co-exposure to multiple pathogens in Tenebrio molitor at different CO concentrations.

J Invertebr Pathol

January 2025

UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom. Electronic address:

The insect mass-rearing industry to produce feed and food is expanding rapidly. Insects in production frequently encounter multiple pathogens and environmental stressors simultaneously, which can lead to significant economic losses. Our understanding of the interactions between different stressors remains limited, and existing methods primarily focus on determining overall patterns of additivity, synergism, or antagonism.

View Article and Find Full Text PDF

Establishing best practices for insect resistance management: a new paradigm for genetically engineered toxins in cotton expressing Mpp51Aa2.

J Econ Entomol

January 2025

Department of Entomology and Plant Pathology and the North Carolina Plant Sciences Institute, NC State University, Raleigh, NC, USA.

Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.

View Article and Find Full Text PDF

Mosquitoes, particularly , pose significant public health risks by transmitting diseases like dengue, zika and chikungunya. var. (BTI) is a crucial larvicide targeting mosquitoes while sparing other organisms and the environment.

View Article and Find Full Text PDF

Genetic Transformation of L. with the Gene Confers Resistance to (Walker).

Plants (Basel)

December 2024

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China.

L. is a popular ornamental plant in the genus Torenia, widely used in commercial landscaping, especially during the summer. Additionally, Torenia has served as a model ornamental plant in many studies exploring ornamental characteristics and pest control through genetic engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!