Background: The combined injury of traumatic brain injury and hemorrhagic shock has been shown to worsen coagulopathy and systemic inflammation, thereby increasing posttraumatic morbidity and mortality. Aeromedical evacuation to definitive care may exacerbate postinjury morbidity because of the inherent hypobaric hypoxic environment. We hypothesized that blood product resuscitation may mitigate the adverse physiologic effects of postinjury flight.
Methods: An established porcine model of controlled cortical injury was used to induce traumatic brain injury. Intracerebral monitors were placed to record intracranial pressure, brain tissue oxygenation, and cerebral perfusion. Each of the 42 pigs was hemorrhaged to a goal mean arterial pressure of 40 ± 5 mm Hg for 1 hour. Pigs were grouped according to resuscitation strategy used-Lactated Ringer's (LR) or shed whole blood (WB)-then placed in an altitude chamber for 2 hours at ground, 8,000 ft, or 22,000 ft, and then observed for 4 hours. Hourly blood samples were analyzed for proinflammatory cytokines and lactate. Internal jugular vein blood flow was monitored continuously for microbubble formation with altitude changes.
Results: Cerebral perfusion, tissue oxygenation, and intracranial pressure were unchanged among the six study groups. Venous microbubbles were not observed even with differing altitude or resuscitation strategy. Serum lactate levels from hour 2 of flight to the end of observation were significantly elevated in 22,000 + LR compared with 8,000 + LR and 22,000 + WB. Serum IL-6 levels were significantly elevated in 22,000 + LR compared with 22,000 + WB, 8,000 + LR and ground+LR at hour 1 of observation. Serum tumor necrosis factor-α was significantly elevated at hour 2 of flight in 8,000 + LR versus ground+LR, and in 22,000 + LR vs. 22,000 + WB at hour 1 of observation. Serum IL-1β was significantly elevated hour 1 of flight between 8,000 + LR and ground+LR.
Conclusion: Crystalloid resuscitation during aeromedical transport may cause a prolonged lactic acidosis and proinflammatory response that can predispose multiple-injury patients to secondary cellular injury. This physiologic insult may be prevented by using blood product resuscitation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TA.0000000000003433 | DOI Listing |
Alzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.
View Article and Find Full Text PDFBackground: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with neuroinflammation and heightened production of reactive oxygen species (ROS) in the brain from overactive NADPH Oxidase 2 (NOX2). The current study examines whether administration of a novel, brain-penetrant NOX2 inhibitor (CPP11G & CPP11H) reduces amyloid plaque load and improves AD-associated vascular dysfunction in a male APP-PS1 mouse model of AD.
Method: Intraperitoneal injections of CPP11G (n = 1) or CPP11H (n = 2) three times per week began at 9-10 months of age in the treatment APP-PS1 group (15 mg/kg).
Background: Alzheimer's disease (AD) is the most common cause of age-related dementia, and the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles is associated with the neurodegeneration and cognitive impairment in this incurable disease. Growing evidence shows that epigenetic dysregulation through histone deacetylases (HDACs) plays a critical role in synaptic dysfunction and memory loss in AD, and HDACs have been highlighted as a novel class of anti-Alzheimer targets. Moreover, restoring Wnt/β-catenin signaling, which is greatly suppressed in AD brains, is a promising therapeutic strategy for AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sanford burnham prebys medical discovery institute, San Diego, CA, USA.
Background: A pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid-beta peptide (Aß). Potential treatments targeting Aß production such as γ-secretase inhibitors have had limited success. A promising alternative approach involves addressing early synaptic dysfunction by modulating molecules like striatal-enriched protein tyrosine phosphatase (STEP), whose levels and activity are upregulated by Aß.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!