The pathological hallmarks of Alzheimer's disease (AD) are manifested as an increase in the level of oxidative stress and aggregation of the amyloid-β protein. , , and experiments were designed and carried out with multifunctional cholinergic inhibitor, F24 (EJMC-) to explore its neuroprotective effects in AD models. The neuroprotection ability of F24 was tested in SH-SY5Y cells, a widely used neuronal cell line. The pretreatment and subsequent co-treatment of SH-SY5Y cells with different doses of F24 was effective in rescuing the cells from HO induced neurotoxicity. F24 treated cells were found to be effective in the reduction of cellular reactive oxygen species, DNA damage, and Aβ induced neurotoxicity, which validated its neuroprotective effectiveness. F24 exhibited efficacy in an model by rescuing eye phenotypes from degeneration caused by Aβ toxicity. Further, computational studies were carried out to monitor the interaction between F24 and Aβ aggregates. The computational studies corroborated our and studies suggesting Aβ aggregation modulation ability of F24. The brain entry ability of F24 was studied in the parallel artificial membrane permeability assay. Finally, F24 was tested at doses of 1 and 2.5 mg/kg in the Morris water maze AD model. The neuroprotective properties shown by F24 strongly suggest that multifunctional features of this molecule provide symptomatic relief and act as a disease-modifying agent in the treatment of AD. The results from our experiments strongly indicated that natural template-based F24 could serve as a lead molecule for further investigation to explore multifunctional therapeutic agents for AD management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.1c00443DOI Listing

Publication Analysis

Top Keywords

f24
12
induced neurotoxicity
12
ability f24
12
neuroprotective properties
8
oxidative stress
8
alzheimer's disease
8
f24 tested
8
sh-sy5y cells
8
computational studies
8
exploration neuroprotective
4

Similar Publications

In order to explore the differences in subcutaneous fat metabolism and pathway information in yaks under different feeding conditions, this experiment used Illumina high-throughput sequencing technology to sequence the transcriptome of subcutaneous fat tissues of yaks under different feeding conditions and analyzed them bioinformatically. 9 naturally grazed yaks at 18 months of age were randomly divided into 3 groups, one group (G18_SF) was slaughtered, one group (G24_SF) continued to graze until 24 months of age was slaughtered, and one group (F24_SF) was housed until 24 months of age was slaughtered, and subcutaneous fat tissue was collected from the back of the yaks. A total of 15,261 expressed genes were identified in the nine samples, with 13,959 coexpressed genes and 533 differential expressed genes (DEGs), G18_SF vs F24_SF 133 DEGs, G18_SF vs G24_SF 469 DEGs, F24_SF vs G24_SF 5 DEGs.

View Article and Find Full Text PDF

Background: Reliable, noninvasive tools to diagnose at-risk metabolic dysfunction-associated steatohepatitis (MASH) are urgently needed to improve management. We developed a risk stratification score incorporating proteomics-derived serum markers with clinical variables to identify high-risk patients with MASH (NAFLD activity score >4 and fibrosis score >2).

Methods: In this 3-phase proteomic study of biopsy-proven metabolic dysfunction-associated steatotic fatty liver disease, we first developed a multi-protein predictor for discriminating NAFLD activity score >4 based on SOMAscan proteomics quantifying 1305 serum proteins from 57 US patients.

View Article and Find Full Text PDF

Purpose: This study assessed the impact of hepatic fibrosis on the diagnostic performance of the controlled attenuation parameter (CAP) in quantifying hepatic steatosis in patients with chronic hepatitis B (CHB).

Methods: CHB patients who underwent liver stiffness measurement (LSM) and CAP assessment using transient elastography before liver resection between 2019 and 2022 were retrospectively evaluated. Clinical data included body mass index (BMI) and laboratory parameters.

View Article and Find Full Text PDF

A Metal-Organic Framework-Based Colorimetric Sensor Array for Transcutaneous CO Monitoring via Lensless Imaging.

Biosensors (Basel)

October 2024

McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA.

Transcutaneous carbon dioxide (TcPCO2) monitoring provides a non-invasive alternative to measuring arterial carbon dioxide (PaCO2), making it valuable for various applications, such as sleep diagnostics and neonatal care. However, traditional transcutaneous monitors are bulky, expensive, and pose risks such as skin burns. To address these limitations, we have introduced a compact, cost-effective CMOS imager-based sensor for TcPCO2 detection by utilizing colorimetric reactions with metal-organic framework (MOF)-based nano-hybrid materials.

View Article and Find Full Text PDF

With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!