Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894950 | PMC |
http://dx.doi.org/10.1093/plcell/koab304 | DOI Listing |
Front Aging
December 2024
Integrative Research Institute, Sacramento, CA, United States.
Background And Objectives: Aging clocks are computational models designed to measure biological age and aging rate based on age-related markers including epigenetic, proteomic, and immunomic changes, gut and skin microbiota, among others. In this narrative review, we aim to discuss the currently available aging clocks, ranging from epigenetic aging clocks to visual skin aging clocks.
Methods: We performed a literature search on PubMed/MEDLINE databases with keywords including: "aging clock," "aging," "biological age," "chronological age," "epigenetic," "proteomic," "microbiome," "telomere," "metabolic," "inflammation," "glycomic," "lifestyle," "nutrition," "diet," "exercise," "psychosocial," and "technology.
Sci Rep
December 2024
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.
View Article and Find Full Text PDFBiomed Khim
December 2024
Pitirim Sorokin Syktyvkar State University, Medical Institute, Laboratory of Translational bioinformatics and systems biology, Syktyvkar, Russia.
The review summarizes recent achievements and future prospects in the use of chronobiotics for regulating circadian rhythms regulation. Special attention is paid to the mechanisms' action, their classification, and the impact of chemical interventions on the biological clock. Chronobiotics defined as a diverse group of compounds capable of restoring disrupted circadian functions, addressing challenges such as irregular work schedules, artificial light exposure or ageing.
View Article and Find Full Text PDFJ Physiol Biochem
December 2024
Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE).
View Article and Find Full Text PDFBiochem J
December 2024
Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, U.S.A.
In mammals, molecular mechanisms of circadian rhythms involve a time-delayed negative feedback loop generating autonomous oscillations of ∼24 h. Most cell types in mammals possess circadian rhythms regulating temporal organization of cellular and physiological processes. Intriguingly, pluripotent stem cells do not possess circadian rhythms and oscillations arise after a defined period of differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!