Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene.

ACS Appl Mater Interfaces

School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China.

Published: January 2022

AI Article Synopsis

Article Abstract

Sensitivity and strain range are two mutually exclusive features of strain sensors, where a significant improvement in flexibility is usually accompanied by a reduction in sensitivity. The skin of a human fingertip, due to its undulating fingerprint pattern, can easily detect environmental signals and enhances sensitivity without losing elasticity. Inspired by this characteristic, laser-induced graphene (LIG) with a fingerprint structure is prepared in one step on a polyimide (PI) film and transferred into an Ecoflex substrate to assemble resistive strain sensors. Experimentally, the fingerprint-inspired strain sensor exhibits a superfast response time (∼70 ms), balanced sensitivity and strain range (a gauge factor of 191.55 in the 42-50% strain range), and good reliability (>1500 cycles). Self-organized microcracks, initiated in weak mechanical areas, cause prominent resistance changes during reconnection/disconnection but irreversibly fail after excessive stretching. The robust function of fingerprint-inspired sensors is further demonstrated by real-time monitoring of tiny pulses, large body movements, gestures, and voice recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c16646DOI Listing

Publication Analysis

Top Keywords

strain range
16
sensitivity strain
12
fingerprint-inspired strain
8
strain sensor
8
balanced sensitivity
8
laser-induced graphene
8
strain sensors
8
strain
7
sensitivity
5
sensor balanced
4

Similar Publications

Advances in analytical scanning transmission electron microscopy (STEM) and in microelectronic mechanical systems (MEMS) based microheaters have enabled in-situ materials' characterization at the nanometer scale at elevated temperature. In addition to resolving the structural information at elevated temperatures, detailed knowledge of the local temperature distribution inside the sample is essential to reveal thermally induced phenomena and processes. Here, we investigate the accuracy of plasmon energy expansion thermometry (PEET) as a method to map the local temperature in a tungsten (W) lamella in a range between room temperature and 700 °C.

View Article and Find Full Text PDF

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Polyphenolic contents, antioxidant, and antimicrobial activities of Saccocalyx satureioides Coss. & Dur. essential oil and methanol extracts.

An Acad Bras Cienc

January 2025

University of M'sila, Department of Microbiology and Biochemistry, University Pole, Road Bordj Bou Arreridj, M'sila 28000, Algeria.

The whole plant Saccocalyx satureioides, an endemic medicinal plant in Algeria, was evaluated for its polyphenolic contents, antioxidant and antimicrobial activities. The polyphenolic contents of the plant methanolic extracts ranged from 170.47 to 285.

View Article and Find Full Text PDF

The objective of this study was to analyze the antimicrobial and anti-stick capacity of essential oil extracted from oregano (Origanum vulgare) in relation to various strains of Escherichia coli (Ec 41, Ec 42, Ec 44, Ec 45) isolated from meat products. Techniques such as Determination of Minimum Inhibitory Concentration were used (MIC) and Minimum Bactericidal Concentration (CBM). Furthermore, the method was used disk diffusion method to examine the interaction between O.

View Article and Find Full Text PDF

Screening, Discovery, and Optimization of the Natural Antitubercular Chlorflavonin from a Marine-Derived Fungal Library.

J Nat Prod

January 2025

Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.

Tuberculosis (TB), caused by the bacterium (), is still a leading cause of mortality worldwide. Fifty-fungi from a marine-derived fungal library were screened for anti- activity, and an strain with strong anti- activity was found. Three known flavones, chlorflavonin (), dechlorflavonin (), and bromoflavone (), were isolated from this fungus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!