Nuclear variations and tapetum polyploidy related to pollen grain development in Passiflora L. (Passifloraceae).

Cell Biol Int

Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava, Paraná, Brazil.

Published: March 2022

Tapetal cells comprise an anther tissue fundamental to pollen grain development. They are associated with endoreduplication events, which culminate in polyploid and multinucleated cells, high metabolic activity, and different organelle arrangements to support all the development of the pollen grains. Passiflora species present a secretory tapetum, with diversity in the number and size of nuclei. Tapetal cells undergo numerous changes in a short period of development when compared to the plant's life span. To improve our knowledge of tapetum development, tests assessing ploidy levels, anatomy, cytochemistry, transmission electron microscopy, flow cytometry, as well as conventional and molecular cytogenetics were used in Passiflora actinia and P. elegans. The current data show striking differences in nuclear organisation during tapetal cell development, including mono to quadrinucleate cells, and ploidy levels from 2n to 32n. One of the most peculiar features was the atypical behaviour of the endoplasmic reticulum (ER), which accumulated in the cell border, similar to a 'cER', as well as large dictyosomes. This endomembrane configuration may be related to the tapetum nutritional network and secretion of compounds at the end of meiosis. Another atypical feature of the ER was the formation of an invagination to establish 'binucleated' polyploid cells. This membrane projection appears when the nuclei form two lobes, as well as when it organises a nucleoplasmic reticulum. These data demonstrate that there are important ultrastructural changes in tapetal cells, including organelle arrangements, ploidy levels, and nuclear activity, common to P. actinia and P. elegans, but different from the plant model A. thaliana.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.11748DOI Listing

Publication Analysis

Top Keywords

tapetal cells
12
ploidy levels
12
pollen grain
8
grain development
8
organelle arrangements
8
actinia elegans
8
development
6
cells
6
nuclear variations
4
tapetum
4

Similar Publications

Alfalfa ( L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

The establishment of the anther somatic niche with single-cell sequencing.

Dev Biol

February 2025

Department of Biology, Stanford University, Stanford, CA, 94305, USA. Electronic address:

The anther is the developmental housing of pollen and therefore the male gametes of flowering plants. The meiotic cells from which pollen are derived must differentiate de novo from somatic anther cells and synchronously develop with the rest of the anther. Anthropogenic control over another development has become crucial for global agriculture so as to maintain inbred lines and generate hybrid seeds of many crops.

View Article and Find Full Text PDF

Unlabelled: This experiment used floral buds from watermelon genic male sterile dual-purpose lines as materials to explore the differentially expressed miRNAs (DEMs) between male fertile and sterile floral buds of watermelon. Paraffin sectioning technology was employed for a cytological analysis, and small RNA sequencing was used to explore miRNAs related to anther or pollen development. Cytological analysis indicated that the abnormal development of tapetal cells may cause microspore abortion.

View Article and Find Full Text PDF

A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!