Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer's disease.

J Neurochem

Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Published: February 2023

Astrocytes are highly efficient homeostatic glial cells playing a crucial role in optimal brain functioning and homeostasis. Astrocytes respond to changes in brain homoeostasis following central nervous system (CNS) injury/diseased state by a specific defence mechanism called reactive astrogliosis. Recent studies have implicated and placed reactive astrogliosis in the centre of pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. The AD biomarker field is evolving rapidly with new findings providing strong evidence which supports the notion that a reactive astrogliosis is an early event in the time course of AD progression which may precede other pathological hallmarks of AD. Clinical/translational in vivo PET and in vitro postmortem brain imaging studies demonstrated 'a first and second wave' of reactive astrogliosis in AD with distinct close-loop relationships with other pathological biomarkers at different stages of the disease. At the end stages, reactive astrocytes are found to be associated, or in proximity, with amyloid plaque and tau pathological deposits in postmortem AD brains. Several new PET-tracers, which are being in pipeline and validated at a very fast pace for mapping and visualising reactive astrogliosis in the brain, will provide further invaluable mechanistic insights into AD and other non-AD dementia pathologies. The complementary roles of microglia and astrocyte activation in AD progression, along with the clinical value of new fluid astrocytes biomarkers in the context of existing biomarkers, are the latest avenue that needs further exploration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15565DOI Listing

Publication Analysis

Top Keywords

reactive astrogliosis
24
alzheimer's disease
8
reactive
7
astrogliosis
5
astrogliosis friend
4
friend foe
4
foe pathogenesis
4
pathogenesis alzheimer's
4
astrocytes
4
disease astrocytes
4

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with neuroinflammation and heightened production of reactive oxygen species (ROS) in the brain from overactive NADPH Oxidase 2 (NOX2). The current study examines whether administration of a novel, brain-penetrant NOX2 inhibitor (CPP11G & CPP11H) reduces amyloid plaque load and improves AD-associated vascular dysfunction in a male APP-PS1 mouse model of AD.

Method: Intraperitoneal injections of CPP11G (n = 1) or CPP11H (n = 2) three times per week began at 9-10 months of age in the treatment APP-PS1 group (15 mg/kg).

View Article and Find Full Text PDF

Background: Aluminium chloride, an environmental toxicant induces neurotoxicity by increasing anxiety, causing cognitive deficit and memory impairment due to its effects on the hippocampus. Omega-3 oil has been shown to improve cognition in neurologic disorders.

Method: Forty adult female rats were divided into 4 groups (n = 10).

View Article and Find Full Text PDF
Article Synopsis
  • Aluminium is a toxic metal that can cause serious damage to the brain, leading to inflammation and neurodegeneration.
  • Eugenol, a natural compound with various health benefits, was studied for its potential to counteract the harmful effects of aluminum toxicity in rats.
  • The research found that eugenol helped restore brain function and reduce damage by reversing oxidative stress and inhibiting harmful signaling pathways associated with aluminum exposure.
View Article and Find Full Text PDF

Retinal glia in myopia: current understanding and future directions.

Front Cell Dev Biol

December 2024

Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Article Synopsis
  • Myopia is a significant public health issue characterized by the elongation and thinning of various eye layers, leading to blurred vision due to defocused light.
  • The role of different glial cells in the retina, including astrocytes, Müller cells, and microglia, is being studied to understand their impact on myopia, particularly regarding support, response to inflammation, and mechanical stretching.
  • This review highlights existing research on the involvement of retinal glia in myopia and suggests avenues for future investigations in this area.
View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by cognitive decline and specific brain changes, necessitating the development of effective animal models to study it.
  • Current transgenic mouse models have limitations in capturing the full complexity of human AD pathology and their interactions.
  • The novel APP/PS1-TauP301L-Adeno mouse model enhances understanding of AD mechanisms by inducing significant pathological symptoms, revealing the exacerbating effect of severe reactive astrogliosis on amyloid-β plaques and neurofibrillary tangles.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!