Dissolution Kinetics of Nifedipine-Ionizable Polymer Amorphous Solid Dispersion: Comparison Between Bicarbonate and Phosphate Buffers.

Pharm Res

Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.

Published: December 2021

Purpose: The intestinal fluid pH is maintained by the bicarbonate buffer system that shows unique properties regarding drug dissolution. Nevertheless, current compendial dissolution tests use phosphate buffers. The purpose of the present study was to investigate the effect of bicarbonate and phosphate buffers on the dissolution profiles of amorphous solid dispersions (ASD) composed of ionizable polymers.

Methods: Hydroxypropylmethylcellulose acetate succinate (HPMCAS), amino methacrylate copolymer (AMC), and hydroxypropylmethylcellulose (HPMC) were employed as acidic, basic, and neutral polymers, respectively. Nifedipine (NIF) was used as a model drug. Dissolution profiles were measured in pH 6.5 bicarbonate and phosphate buffers by a mini-scale paddle dissolution test. The pH of bicarbonate buffers was maintained by the floating lid method.

Results: The pH change of the bicarbonate buffer was suppressed to less than + 0.25 pH for 3 h by the floating lid method. In all cases, the NIF concentration was supersaturated against the solubility of crystalline NIF. The dissolution rates of HPMCAS and AMC ASDs were 1.5 to 2.0-fold slower in the bicarbonate buffer than in the phosphate buffer when compared at the same buffer capacity. The dissolution profile of HPMC ASD was not affected by the buffer species. The higher the buffer capacity and ionic strength, the faster the dissolution rate of HPMCAS ASD.

Conclusion: The dissolution rate of ASDs with ionizable polymers would be overestimated by using unphysiological phosphate buffer solutions. It is important to use a biorelevant bicarbonate buffer solution for dissolution testing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-021-03153-2DOI Listing

Publication Analysis

Top Keywords

phosphate buffers
16
bicarbonate buffer
16
bicarbonate phosphate
12
dissolution
11
buffer
9
amorphous solid
8
bicarbonate
8
buffers purpose
8
drug dissolution
8
dissolution profiles
8

Similar Publications

Unfolding and refolding of GH19 chitinase Chi19MK with antifungal activity from Lysobacter sp. MK9-1 at low pH and high temperature.

J Biosci Bioeng

December 2024

Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:

The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.

View Article and Find Full Text PDF

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [F], [Cu], and [Ga].

View Article and Find Full Text PDF

Degradation behavior of austenite, ferrite, and martensite present in biodegradable Fe-based alloys in three protein-rich pseudo-physiological solutions.

Bioact Mater

November 2024

Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Canada.

This study investigates the degradation behavior of three distinct Fe-based alloys immersed in three pseudo-physiological solutions. These alloys, which have varied Mn and C contents, include a commercially available Fe-0.15C alloy, namely Fe-C, and two newly developed alloys, that is Fe-5Mn-0.

View Article and Find Full Text PDF

Objectives: Nonenzymatic biosensor-based-conductive polymers like polyaniline are highly electrochemically stable, cheap, and easy to synthesize biosensors, which is the main objective of research as well as testing applied in different pH conditions to get optimum sensitivity.

Methods: A nonenzymatic glucose biosensor based on polyaniline was electrochemically deposited on a glassy carbon electrode; the cyclic voltammetry under range applied voltage -0.2 to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!