Cancer-associated fibroblasts (CAFs) have been shown to play a strong role in colorectal cancer metastasis, yet the underlying mechanism remains to be fully elucidated. Using CRC clinical samples together with ex vivo CAFs-CRC co-culture models, we found that CAFs induce expression of Leucine Rich Alpha-2-Glycoprotein 1(LRG1) in CRC, where it shows markedly higher expression in metastatic CRC tissues compared to primary tumors. We further show that CAFs-induced LRG1 promotes CRC migration and invasion that is concomitant with EMT (epithelial-mesenchymal transition) induction. In addition, this signaling axis has also been confirmed in the liver metastatic mouse model which displayed CAFs-induced LRG1 substantially accelerates metastasis. Mechanistically, we demonstrate that CAFs-secreted IL-6 (interleukin-6) is responsible for LRG1 up-regulation in CRC, which occurs through a direct transactivation by STAT3 following JAK2 activation. In clinical CRC tumor samples, LRG1 expression was positively correlated with CAFs-specific marker, α-SMA, and a higher LRG1 expression predicted poor clinical outcomes especially distant metastasis free survival, supporting the role of LRG1 in CRC progression. Collectively, this study provided a novel insight into CAFs-mediated metastasis in CRC and indicated that therapeutic targeting of CAFs-mediated IL-6-STAT3-LRG1 axis might be a potential strategy to mitigate metastasis in CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688517 | PMC |
http://dx.doi.org/10.1038/s41419-021-04461-6 | DOI Listing |
PLoS One
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74-98% yield, 86-99% ) employing 2.5 mol % of a photocatalyst.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Medical Oncology, Institut de Cancérologie de L'Ouest, 44805, Saint Herblain, France.
Immune checkpoint inhibitors (ICI), i.e., anti-PD1/PDL1 and anti-CTLA-4, have reshaped the prognosis of many cancers.
View Article and Find Full Text PDFInt J Cancer
January 2025
Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Studies aimed to evaluate the expected impact of alternative screening strategies are essential for optimizing colorectal cancer (CRC) screening offers, but such studies are lacking in Germany, where two screening colonoscopies (CS) 10 years apart are offered for men from age 50 and women from age 55. Our aim was to explore whether and to what extent the efficacy of utilizing two CS could be enhanced by alternative starting ages and screening intervals. We modeled the expected numbers of CRC cases, CRC deaths, years of potential life lost (YPLL), and disability-adjusted life years (DALYs) due to CRC in hypothetical cohorts of 100,000 men and women aged 45-85 using COSIMO, a validated Markov-based multi-state simulation model.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!