Objective: Recent studies have provided insights into the gut microbiota in autism spectrum disorder (ASD); however, these studies were restricted owing to limited sampling at the unitary stage of childhood. Herein, we aimed to reveal developmental characteristics of gut microbiota in a large cohort of subjects with ASD combined with interindividual factors impacting gut microbiota.
Design: A large cohort of 773 subjects with ASD (aged 16 months to 19 years), 429 neurotypical (NT) development subjects (aged 11 months to 15 years) were emolyed to determine the dynamics change of gut microbiota across different ages using 16S rRNA sequencing.
Result: In subjects with ASD, we observed a distinct but progressive deviation in the development of gut microbiota characterised by persistently decreased alpha diversity, early unsustainable immature microbiota, altered aboudance of 20 operational taxonomic units (OTUs), decreased taxon detection rate and 325 deregulated microbial metabolic functions with age-dependent patterns. We further revealed microbial relationships that have changed extensively in ASD before 3 years of age, which were associated with the severity of behaviour, sleep and GI symptoms in the ASD group. This analysis demonstrated that a signature of the combination of 2 OTUs, and , and 17 microbial metabolic functions efficiently discriminated ASD from NT subjects in both the discovery (area under the curve (AUC)=0.86), and validation 1 (AUC=0.78), 2 (AUC=0.82) and 3 (AUC=0.67) sets.
Conclusion: Our large cohort combined with clinical symptom analysis highlights the key regulator of gut microbiota in the pathogenesis of ASD and emphasises the importance of monitoring and targeting the gut microbiome in future clinical applications of ASD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279844 | PMC |
http://dx.doi.org/10.1136/gutjnl-2021-325115 | DOI Listing |
Chin Med
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
Background: Recurrent vaginitis in conjunction with urinary tract infection (RV/UTI) in perimenopausal women is a common clinical condition that impacts both doctors and patients. Its pathogenesis is not completely known, but the urogenital microbiota is thought to be involved. We compared the urogenital and gut microbiotas of perimenopausal women experiencing RV/UTI with those of age-matched controls to provide a new microbiological perspective and scheme for solving clinical problems.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFDev Cell
December 2024
Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:
The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!