Inflammation involves a delicate balance between pathogen clearance and limiting host tissue damage, and perturbations in this equilibrium promote disease. Patients suffering from autoimmune diseases, such as systemic lupus erythematosus (SLE), have higher levels of serum S100A9 protein and increased risk for infection. S100A9 is highly abundant within neutrophils and modulates antimicrobial activity in response to bacterial pathogens. We reasoned that increased serum S100A9 in SLE patients reflects accumulation of S100A9 protein in neutrophils and may indicate altered neutrophil function. In this study, we demonstrate elevated S100A9 protein within neutrophils from SLE patients, and MRL/ mice associates with lower mitochondrial superoxide, decreased suicidal neutrophil extracellular trap formation, and increased susceptibility to infection. Furthermore, increasing mitochondrial superoxide production restored the antibacterial activity of MRL/ neutrophils in response to These results demonstrate that accumulation of intracellular S100A9 associates with impaired mitochondrial homeostasis, thereby rendering SLE neutrophils inherently less bactericidal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761356PMC
http://dx.doi.org/10.4049/jimmunol.2100752DOI Listing

Publication Analysis

Top Keywords

s100a9 protein
12
mitochondrial homeostasis
8
systemic lupus
8
lupus erythematosus
8
neutrophil extracellular
8
extracellular trap
8
trap formation
8
serum s100a9
8
sle patients
8
protein neutrophils
8

Similar Publications

Metastatic cancer is still one of the leading causes of death worldwide despite significant advancements in diagnosis and treatment. Biomarkers are one of the most promising diagnostic tools that are used alongside traditional diagnostic tools in cancer patients. DAMPs are intracellular molecules released in response to cellular stress, tissue injury, and cell death.

View Article and Find Full Text PDF

Bacterial pneumonia is a significant public health burden, contributing to substantial morbidity, mortality, and healthcare costs. Current therapeutic strategies beyond antibiotics and adjuvant therapies are limited, highlighting the need for a deeper understanding of the disease pathogenesis. Here, we employed single-cell RNA sequencing of 444,146 bronchoalveolar lavage fluid cells (BALFs) from a large cohort of 74 individuals, including 58 patients with mild (n = 22) and severe (n = 36) diseases as well as 16 healthy donors.

View Article and Find Full Text PDF
Article Synopsis
  • GBM IDH wild type (GBM IDH wt) is linked to bad outcomes and intense inflammatory processes that help tumors grow and attract immune cells, making them more aggressive.
  • Researchers utilized RNA-seq and bioinformatics tools to explore how inflammatory molecules, specifically S100A proteins, play a role in glioma, finding a notable increase in S100A expression in GBM IDH wt compared to IDH mutants.
  • The study identified specific functions of S100A9, A11, and A13 in different regions of the glioma microenvironment, suggesting potential therapeutic strategies, such as using the RAGE inhibitor Azeliragon, currently in clinical trials, to counteract these inflammatory effects.
View Article and Find Full Text PDF

Growing evidence supports a role for dysregulated neuroinflammation in autism. However, the underlying mechanisms of microglia-evoked neuroinflammation in the development of autistic phenotypes have not been elucidated. This study aimed to investigate the role and underlying mechanisms of microglial S100 calcium-binding protein A9 (S100A9) in autistic phenotypes.

View Article and Find Full Text PDF

Mechanism of S100A9-mediated astrocyte activation via TLR4/NF-κB in Parkinson's disease.

Int Immunopharmacol

December 2024

Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Astrocyte-mediated neuroinflammation plays a key role in Parkinson's disease (PD) progression. The proinflammatory protein S100A9 is linked to various neurodegenerative diseases, but its involvement in astrocyte activation in PD remains unclear. Here, we investigate the role of S100A9 in astrocyte-mediated neuroinflammation in PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!