Manganese-doped ceria nanoparticles were prepared by hydrothermal synthesis and the prepared samples were thermally treated at 500 °C for 2 h. The samples were investigated using x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), Nadsorption and x-ray photoelectron spectroscopy (XPS). XRD revealed that nanocrystalline ceria is the main phase in all samples, while a romanechite-like phase (NaMnO) appears in the sample doped with 30% of Mn. TEM coupled with EDS exposed the presence of the same phase in the sample doped with 20% Mn. While ceria particles have spherical morphology and particle size ranging from 4.3 to 9.2 nm, the rare crystals of the romanechite-like phase adopt a tubular morphology with a length of at least 1m. However, the decrease in the ceria lattice constant and the EDS spectra of the ceria nanoparticles clearly indicate that a substantial amount of manganese entered the ceria crystal lattice. Manganese doping has a beneficial impact on the specific surface area of ceria. XPS measurements reveal a decrease in the Ce/Ce + Cecontent in the doped samples which is replaced by Mn. Moreover, a drastic increase in adsorbed oxygen is observed in the doped samples which is the consequence of the increase in Mnspecies that promotes oxygen migrations to the surface of the sample. Compared to the pure sample, the doped samples showed significantly higher catalytic activity for the process of toluene oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac44edDOI Listing

Publication Analysis

Top Keywords

ceria nanoparticles
12
sample doped
12
doped samples
12
catalytic activity
8
ceria
8
manganese-doped ceria
8
romanechite-like phase
8
samples
6
phase
5
doped
5

Similar Publications

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Diabetes mellitus (DM) induced mitochondrial oxidative stress (OS) can lead to severe injury of dental pulp. The cerium oxide nanoparticles (CNP) have been proven to have excellent antioxidative activity. However, whether CNP can relieve dental pulp damage caused by DM and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice.

Pharmaceutics

December 2024

Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.

Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!