Meso-aryl-substituted thiacarbocyanine dyes as spectral-fluorescent probes for DNA.

Spectrochim Acta A Mol Biomol Spectrosc

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334 Russia. Electronic address:

Published: March 2022

AI Article Synopsis

  • The study investigates how two specific thiacarbocyanine dyes interact with double-stranded (dsDNA) and single-stranded (ssDNA) in water, using spectral and fluorescent methods.
  • Complexation with DNA causes both the aggregation of the dyes and the creation of highly fluorescent complexes, indicating that the dyes can intercalate between base pairs and bind in the grooves of the DNA structure.
  • The research also finds that the presence of these dyes increases the stability of dsDNA, similar to a well-known DNA intercalator, and provides insights into their potential application as DNA probes while exploring their photochemical behavior when bound to ssDNA.

Article Abstract

The noncovalent interaction of meso-aryl-substituted thiacarbocyanine dyes I and II with dsDNA and ssDNA in aqueous solutions has been studied by spectral-fluorescent methods. Complexation with DNA is accompanied by both aggregation of the dyes and the formation of monomeric strongly fluorescent complexes. Experiments on molecular docking of dyes I and II with dsDNA confirm the previous assumption about the possibility of the formation of complexes of different types: intercalation between base pairs and in the grooves of the double helix of the biopolymer. The possibility of intercalation of the dyes in the complex is confirmed by experiments on thermal dissociation of dsDNA in the presence of dyes I and II, as well as experiments on the interaction of the dyes with ssDNA. An increase in the melting temperatures T of dsDNA is obtained in the presence of I and II, similar to that observed for the classical intercalator ethidium bromide. The limits of detection and quantification of DNA, which are important for the use of the dyes as probes for DNA, have been determined. The primary photochemical processes of the dyes in complexes with ssDNA were studied by flash photolysis technique. Complexation with ssDNA hinders photoisomerization and creates favorable conditions for the dye triplet state formation. The decay kinetics of the triplet state of the dyes were monoexponential. The rate constant of quenching of the triplet state by air oxygen was estimated for dye I complexed with ssDNA and was found to be less than the diffusion-controlled limit. This is probably a consequence of the shielding effect of the complex on the triplet quenching process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120744DOI Listing

Publication Analysis

Top Keywords

triplet state
12
dyes
10
meso-aryl-substituted thiacarbocyanine
8
thiacarbocyanine dyes
8
probes dna
8
dyes dsdna
8
dsdna presence
8
ssdna
5
dyes spectral-fluorescent
4
spectral-fluorescent probes
4

Similar Publications

Response to EGFR/NTRK/MET Co-Inhibition Guided by Paired NGS in Advanced NSCLC With Acquired EGFR L858R/T790M/C797S Mutations.

J Natl Compr Canc Netw

December 2024

1Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

EGFR tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes for patients with non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, resistance to TKI therapy often develops due to secondary EGFR mutations or the activation of bypass signalling pathways. Next-generation sequencing (NGS) can efficiently identify actionable genetic alterations throughout treatment.

View Article and Find Full Text PDF

Photoinduced Reductive C-O Couplings from Unsymmetrical Bis-Cyclometalated Pt(IV) Dicarboxylato Complexes.

Inorg Chem

December 2024

Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, Murcia 30100, Spain.

Unsymmetrical bis-cyclometalated dicarboxylato complexes (-6-32)-[Pt(tpy)(OCR)] [tpy = cyclometalated 2-(-tolyl)pyridine, R = -Bu (), Me (), Ph (), CF ()], are obtained from the reaction of -[Pt(tpy)] with the appropriate PhI(OCR) reagent. Treatment of complexes of this type with different carboxylates (R'CO) results in the formation of mixed-carboxylato derivatives, namely (-6-43)-[Pt(tpy)(OCMe)(OCR')] [R' = -Bu (), CF (), Ph ()], (-6-34)-[Pt(tpy)(OCCF)(OCR')] [R' = -Bu (), Me (), Ph ()], and (-6-34)-[Pt(tpy)(OC--Bu)(OCMe)] (). Irradiation of - and - with UV light (365 nm) in MeCN gives 5-methyl-2-(2-pyridyl)phenyl pivalate (), 5-methyl-2-(2-pyridyl)phenyl acetate () or 5-methyl-2-(2-pyridyl)phenyl benzoate () as the major photoproduct from most complexes, resulting from a reductive C-O coupling between a tpy ligand and a carboxylato ligand.

View Article and Find Full Text PDF

Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation.

Chem Rec

December 2024

Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China.

Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry.

View Article and Find Full Text PDF

Heavy atom effects on synthetic pyranoanthocyanin analogues.

Photochem Photobiol

December 2024

Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.

Pyranoflavylium cations are synthetic analogues of pyranoanthocyanins, the much more color-stable compounds that are formed spontaneously from grape anthocyanins during the maturation of red wines. In the present work, our studies of the photophysical properties of pyranoanthocyanin analogues are extended to include nine pyranoflavylium cations substituted with one or two bromo and/or iodo heavy atoms. The room temperature fluorescence, 77 K fluorescence and phosphorescence, triplet formation in solution, and sensitized singlet oxygen formation, with excited state acidity suppressed by the addition of trifluoroacetic acid, are compared to those of similar pyranoflavylium cations that do not contain a heavy atom.

View Article and Find Full Text PDF

The synthesis, electrochemical, spectroelectrochemical, photophysical and light induced electron transfer reactions in two new anthanthrene quinodimethanes have been studied and analyzed in the context of dynamic electrochemistry. Their properties are dependent on the interconversion between folded and twisted forms, which are separated by a relatively small energy range, thus allowing to explore their interconversion by variable temperature measurements. The photophysics of these molecules is mediated by a diradical excited state with a twisted structure that habilitates rapid intersystem crossing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!