The 3C-like protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to the virus life cycle and is supposed to be a potential target for the treatment of coronaviral infection. Traditional Chinese medicines (TCMs) have played an impressive role in the treatment of COVID-19 in China. The effectiveness of TCM formulations prompts scientists to take continuous effort on searching for bioactive small molecules from the ancient resources. Herein, we developed a native mass spectrometry-based affinity-selection method for rapid screening of active small molecules from crude herbal extracts applied for COVID-19 therapy. Six common herbs named Lonicera japonica, Scutellaria baicalensis, Forsythia suspensa, Glycyrrhiza uralensis, Cirsium japonicum, and Andrographis paniculata were investigated. After preliminary separation of the crude extracts, the fractions were incubated with 3CLpro. A native MS-based affinity screening assay was then conducted to search for the protein-ligand complexes. A UHPLC-Q/TOF-MS with UNIFI data acquisition and data processing software was applied to identify the hit compounds. Standard compounds were used to verify the outcomes. Among the 16 hits, three flavonoids, baicalein, scutellarein and ganhuangenin, were identified as potential noncovalent inhibitors against 3CLpro with IC values of 0.94, 3.02, and 0.84 μM, respectively. Their binding affinities were further characterized by native MS, with K values being 1.43, 3.85, and 1.09 μM, respectively. Overall, we established an efficient native MS-based strategy for discovering 3CLpro ligands from crude mixtures, which supplies a potential strategy of small molecule lead discovery from TCMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670146 | PMC |
http://dx.doi.org/10.1016/j.jpba.2021.114538 | DOI Listing |
Alzheimers Dement
December 2024
Yale University School of Medicine, New Haven, CT, USA.
Background: Our group has developed the innovative proximity labeling cell-type specific in vivo biotinylation of proteins (CIBOP) approach to quantify cell-specific in vivo proteomic and transcriptomic signatures that may lead to identify novel therapeutic targets for Alzheimer's disease (AD) pathogenesis. CIBOP uses TurboID, a biotin ligase, selectively expressed in the cell type of interest using a conditional Cre/lox genetic strategy to label the cytosolic proteome. Using mass spectrometry (MS)-based proteomics, we have found that TurboID biotinylates many RNA-binding and ribosomal proteins.
View Article and Find Full Text PDFMol Syst Biol
January 2025
Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Pharmacology & Toxicology, University of Utah, 84112 Salt Lake City, USA.
Mass Spectrom (Tokyo)
September 2024
Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
Host cell protein (HCP) impurities are considered a critical quality attribute of biopharmaceuticals because of their potential to compromise safety and efficacy, and LC/MS-based analytical methods have been developed to identify and quantify individual proteins instead of employing enzyme-linked immunosorbent assay to assess total HCP levels. Native digestion enables highly sensitive detection of HCPs but requires overnight incubation to generate peptides, limiting the throughput of sample preparation. In this study, we developed an approach employing native digestion on a trypsin-immobilized column to improve the sensitivity and throughput.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!