Baicalin has distinct therapeutic effects in various skin diseases animal models such as atopic dermatitis (AD) and psoriasis. In this study, we aimed to investigate the anti-atopic dermatitis (AD) effects of baicalin in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Female BALB/c mice treated with DNCB to induce AD-like skin lesions and orally administrated with baicalin daily for 14 consecutive days. Baicalin significantly inhibited dorsal skin thickness and trans-epidermal water loss and epidermal thickness in dorsal skin. In addition, baicalin also significantly up-regulated the protein expressions of filaggrin, involucrin, and loricrin, but inhibited the inflammatory response and the activation of NF-κB and JAK/STAT pathways in the dorsal skin of the DNCB-treated mice. Furthermore, baicalin significantly restored the abundance of probiotics in the gut microbiota of the DNCB-treated mice. Pseudo germ-free (GF) DNCB-treated mice receiving fecal microbiota from baicalin donors reduced the dorsal skin thickness and skin EASI score, and inhibited the release of IgE, histamine, TNF-α and IL-4 in serum of mice. In summary, baicalin ameliorates AD-like skin lesions induced by DNCB in mice via regulation of the Th1/Th2 balance, improvement of skin barrier function and modulation of gut dysbiosis, and inhibition of inflammation through suppressing the activation of NF-κB and JAK/STAT pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2021.105538 | DOI Listing |
Int J Mol Sci
December 2024
Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits. To date, CBC's known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis.
View Article and Find Full Text PDFBMB Rep
January 2025
Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
Front Pharmacol
May 2024
Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea.
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines.
View Article and Find Full Text PDFSci Rep
March 2024
Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, Republic of Korea.
Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis.
View Article and Find Full Text PDFInflammation
April 2024
Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany.
The mouse model of 2,4-dinitrochlorbenzene (DNCB)-induced human-like atopic dermatitis (hlAD) has been widely used to test novel treatment strategies and compounds. However, the study designs and methods are highly diverse, presenting different hlAD disease patterns that occur after sensitization and repeated challenge with DNCB on dorsal skin. In addition, there is a lack of information about the progression of the disease during the experiment and the achieved pheno- and endotypes, especially at the timepoint when therapeutic treatment is initiated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!