Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of β-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 μM), β-pinene (10 μM; β-10) and As + β-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (HO) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of β-10 (i.e., As + β-10 treatments) led to an increase in root and shoot length. Treatment with As + β-10 resulted in a decline in As accumulation, HO content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + β-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that β-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of β-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.113080DOI Listing

Publication Analysis

Top Keywords

as-induced oxidative
16
enzymatic antioxidants
12
shoot length
12
arsenic as-induced
8
oxidative stress
8
oryza sativa
8
oxidative damage
8
activities enzymatic
8
β-10 + β-10
8
+ β-10 treatments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!