Emerging electrochemistry-based process for sludge treatment and resources recovery: A review.

Water Res

Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.

Published: February 2022

The electrochemical process is gaining widespread interest as an emerging alternative for sludge treatment. Its potentials for sludge stabilization and resources recovery have been well proven to date. Despite the high effectiveness of the electrochemical process having been highlighted in several studies, concerns about the electrochemical sludge treatment, including energy consumption, scale-up feasibility, and electrode stability, have not yet been addressed. The present paper critically reviews the versatile uses of the electrochemical processes for sludge treatment and resource recovery, from the fundamentals to the practical applications. Particularly considered are the enhancement of the digestion of the anaerobic sludge and dewaterability, removal of pathogens and heavy metals, and control of sludge malodor. In addition, the opportunities and challenges of the sludge-based resource recovery (i.e., nitrogen, phosphorus, and volatile fatty acids) are discussed. Insights into the working mechanisms (e.g., electroporation, electrokinetics and electrooxidation) of electrochemical processes are reviewed, and perspectives and future research directions are proposed. This work is expected to provide an in-depth understanding and broaden the potential applications of electrochemical processes for sludge treatment and resource recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117939DOI Listing

Publication Analysis

Top Keywords

sludge treatment
20
electrochemical processes
12
resource recovery
12
sludge
8
resources recovery
8
electrochemical process
8
processes sludge
8
treatment resource
8
electrochemical
6
treatment
5

Similar Publications

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.

Water Res X

May 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.

Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!