Our previous study showed that electroacupuncture (EA) pretreatment elicited protective effect on cerebral ischemia-reperfusion injury (CIRI) in rats, at least partly, which was associated with transient receptor potential vanilloid 1 (TRPV1)-regulated anti-oxidant stress and anti-inflammation. In this study, we further investigated the possible contribution of TRPV1-mediated anti-apoptosis in EA pretreatment-evoked neuroprotection in CIRI. After EA pretreatment at Baihui (GV20), bilateral Shenshu (BL23) and Sanyinjiao (SP6) acupoints, transient focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 6 h in rats. Then, infarct volume, nerve cell injury, neuronal apoptosis, NF-κB signaling activation, and expression of TRPV1 were evaluated by TTC staining, Hematoxylin-Eosin staining, transmission electron microscopy, immunochemistry, immunofluorescence, and Western blot, respectively. The presented data showed that EA pretreatment significantly reduced infarct volume, relieved nerve cell injury, decreased the expression of pro-apoptotic proteins Bax and cleaved caspase-3, increased the level of anti-apoptotic protein Bcl-2, inhibited NF-κB (p65) transcriptional activity, and curbed TRPV1 expression in MCAO rats. By contrast, enhancement of TRPV1 expression accompanying capsaicin application, the specific TRPV1 agonists, markedly accelerated nerve cell damage, aggravated neuronal apoptosis, prompted nuclear translocation of NF-κB (p65), resulting in the reversion of EA pretreatment-evoked neuroprotective effect in MCAO rats. Thus, we conclude that EA pretreatment-induced downregulation of neuronal TRPV1 expression plays an anti-apoptosis role through inhibiting NF-κB signaling pathway, thereby protecting MCAO rats from cerebral ischemia-reperfusion injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2021.12.017 | DOI Listing |
J Ginseng Res
January 2025
Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
[This corrects the article DOI: 10.1016/j.jgr.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:
Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).
View Article and Find Full Text PDFNeurosci Bull
January 2025
Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
Drug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
Curr Pharm Des
January 2025
Department of Physiology, Medical School, Selcuk University, Konya, Turkey.
Introduction: Brain ischemia-reperfusion can cause serious and irreversible health problems. Recent studies have suggested that certain flavonoids may help stabilize the correctly folded structure of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations.
Objective: The current study aimed to determine the effect of 3',4'-Dihydroxyflavonol (DiOHF) supplementation for 1 week on lipid peroxidation in the retina tissue following focal brain ischemia-reperfusion in rats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!