Most in vitro studies examine the effects of a single ED or a mixture of EDs on granulosa cells using short-term exposure; however, this approach is unlikely to reflect long-term, real-life exposures that are common in humans. We established an in vitro model that mimics long-term exposure of granulosa cells to real-life ED mixture. Human granulosa cells, HGrC1, were exposed to the mixture consisting of bisphenol A, polychlorinated biphenyl 153, benzo[a]pyrene, and perfluorooctanesulfonate in concentrations found in human follicular fluid (MIX) for 48 h and 4 weeks. Only long-term exposure to MIX decreased estradiol production after 2 and 3 weeks, and CYP19A1 protein after 2 weeks of exposure. By week 4, the cells restored estradiol production and CYP19A1 protein level. MIX increased basal progesterone production after 3 and 4 weeks of exposure but did not affect STAR and CYP11A1 mRNA. Cells that had been exposed to MIX for 4 weeks showed augmentation of forskolin-stimulated progesterone production. These results demonstrate that only long-term exposure to MIX alters steroidogenesis in HGrC1. This study also revealed that adverse effects of MIX on steroidogenesis in HGrC1 occurred a few weeks into MIX exposure and that this effect can be transient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2021.105302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!