Arsenic exposure via drinking water during pregnancy and lactation induces autism-like behaviors in male offspring mice.

Chemosphere

Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning, China. Electronic address:

Published: March 2022

Exposure to arsenic (As), an environmental toxicant, causes damages to the central nervous system (CNS) structure and function. Emerging epidemiological studies support that exposure to As, especially during the critical periods of the CNS development, may act as an environmental risk factor of autism spectrum disorders (ASD), which is characterized by behavioral changes, including abnormal social behaviors, restricted interests and repetitive behaviors. However, direct evidence supporting the cause-effect relationship between As exposure and the risk of ASD is still missing. Thus, we aimed to investigate whether As exposure during pregnancy and lactation led to autism-like behaviors in offspring mice in the present study. We established a mice model of exposure to As via drinking water during pregnancy and lactation and conducted a battery of behavioral tests to evaluate social behaviors, repetitive behaviors, anxiety behaviors and learning and memory ability in offspring mice. We found that perinatal exposure to As caused autism-like behaviors in male offspring, which demonstrated by abnormal social behaviors and repetitive behaviors. Anxiety-like behaviors, and learning and memory impairments, known as concomitant behavioral phenotypes in mice with autism-like behaviors, were also observed. Decreases of synaptic density, especially in cortex, hippocampus and cerebellum, are extensively observed in both ASD patients and animal models of ASD. Thus, immunofluorescence staining and western blotting were used to observe the expression of PSD-95 and SYP, well-known markers for presynaptic and postsynaptic membranes, to assess the synaptic density in offspring cortex, hippocampus and cerebellum. We found perinatal exposure to As decreased the expression of PSD-95 and SYP in these brain regions. This indicated that perinatal exposure to As caused decreases of synaptic density, a typical autism-like cellular alteration in brains, which may contribute to autism-like behaviors in offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.133338DOI Listing

Publication Analysis

Top Keywords

autism-like behaviors
20
behaviors
13
pregnancy lactation
12
offspring mice
12
social behaviors
12
repetitive behaviors
12
perinatal exposure
12
synaptic density
12
exposure drinking
8
drinking water
8

Similar Publications

Cortex-specific Tmem169 Deficiency Induces Defects in Cortical Neuron Development and Autism-like Behaviors in Mice.

J Neurosci

January 2025

Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China, 350122.

The development of the nervous system is a complex process, with many challenging scientific questions yet to be resolved. Disruptions in brain development are strongly associated with neurodevelopmental disorders, such as intellectual disability and autism. While the genetic basis of autism is well established, the precise pathological mechanisms remain unclear.

View Article and Find Full Text PDF

Butyrylated modification of corn starch alleviates autism-like behaviors by modulating 5-hydroxytryptamine metabolism and gut-brain neural activity.

Carbohydr Polym

March 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China. Electronic address:

This study was conducted to elucidate the effects of different degrees of substitution (DS) on the properties of propionylated and butyrylated starches and to investigate their efficacy and mechanisms in ameliorating autism-like phenotypes. Fourier transform infrared spectra of propionylated and butyrylated starches revealed the presence of the CO absorption peak at 1730 cm. Additionally, as the DS increased, the surface of the starch granules became rougher, and the crystallinity decreased.

View Article and Find Full Text PDF

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment.

View Article and Find Full Text PDF

Background: (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated.

View Article and Find Full Text PDF

Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents.

Dev Neurobiol

January 2025

Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.

Article Synopsis
  • The gut-brain axis is crucial in neurodevelopmental diseases, with early antibiotic use linked to autism through gut microbiota changes.
  • Capric acid (CA) was studied for its potential neuroprotective effects in rodents with autism-like behaviors induced by penicillin V, highlighting the impact of gut dysbiosis.
  • Results showed that CA treatment improved behavioral and biochemical changes related to autism, suggesting its potential as a treatment option for managing autism linked to gut dysbiosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!