How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach.

Front Neuroendocrinol

Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands. Electronic address:

Published: April 2022

Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yfrne.2021.100972DOI Listing

Publication Analysis

Top Keywords

chronic stress
12
stress contributes
8
type diabetes
8
complexity science
8
science approach
8
stress
7
exposure chronic
4
contributes development
4
development type
4
diabetes complexity
4

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting postmenopausal women. This study investigated the effects of intermittent fasting (IF) on antioxidant and inflammatory markers and liver enzymes in postmenopausal, overweight and obese women with RA. This 8-week randomized controlled trial included 44 postmenopausal women with RA divided into an intervention group following a 16:8 IF diet and a control group maintaining their usual diet and received recommendations for healthy eating.

View Article and Find Full Text PDF

The Role of SIRT1-BDNF Signaling Pathway in Fluoride-Induced Toxicity for Glial BV-2 Cells.

Biol Trace Elem Res

January 2025

Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.

Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!