Fluoride, iron and manganese simultaneous exceedance of standard can be observed in groundwater in northeastern China. This work aims to apply a highly efficient method combining adsorption and oxidation for the synchronous removal of the inorganic ions. An innovative adsorbent (manganese-supported activated alumina) was synthesized by the impregnation method and showed a significant adsorption capacity better than that of fresh activated alumina. The characterization (scanning electron microscope; Brunauer, Emmett and Teller; X-ray diffraction and Fourier transform infrared spectroscopy) results verified the successful introduction of MnOOH and MnO, and the improvement of surface microstructure enhanced the removal ability. The effect of single factors, such as pH value, reaction time or dosage on the removal performance has been verified. The maximum removal efficiencies of fluoride, iron and manganese were optimized via Response surface methodology considering the independent factors in the range of MO@AA dosage (5-9 g/L), pH (4-6) and contact time (4-12 h). Noted that compared with control, MO@AA exhibited 59.4% of improved fluoride performance. At pH of 5.79, contacting time of 12 h and 8.21 g/L of MO@AA, fluoride, iron and manganese removal were found to be 91, 100 and 23%, respectively. Herein, MO@AA was distinguished as good applicability for the treatment of fluoride-, iron- and manganese-containing groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2021.461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!