In vivo imaging of skin is commonly used to investigate dynamic processes in the progression and treatment of psoriasis. Photoacoustic mesoscopy is a new non-invasive imaging modality widely used in bio-imaging, and has recently been applied to imaging skin in vivo. However, photoacoustic imaging has shortcomings. Although high-frequency ultrasonic transducers enable high-resolution photoacoustic imaging, the images may be bandwidth-limited. To overcome this limitation, we designed and fabricated a broadband ultrasonic transducer for photoacoustic mesoscopy. The center frequency of the transducer was 32 MHz (88% bandwidth at -6 dB). The transducer was used to visualize mouse and human skin morphology. Colocalization of high- and low-frequency components revealed information about both the skin surface and dermis. To explore dynamic structural changes in mouse back skin during psoriasis progression, we measured blood oxygen saturation and total hemoglobin in a mouse model using multiwavelength imaging without contrast agents. The results indicate that functional photoacoustic mesoscopy using a broadband high-frequency transducer has great potential for clinical imaging of skin disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2021.3136870 | DOI Listing |
Photoacoustics
December 2024
Clinic and Polyclinic for Vascular and Endovascular Surgery, TUM University Hospital, Hospital rechts der Isar, Technical University of Munich, Munich, Germany.
Microvascular endothelial dysfunction may provide insights into systemic diseases, such as carotid artery disease. Raster-scan optoacoustic mesoscopy (RSOM) can produce images of skin microvasculature during endothelial dysfunction challenges via numerous microvascular features. Herein, RSOM was employed to image the microvasculature of 26 subjects (13 patients with single carotid artery disease, 13 healthy participants) to assess the dynamics of 18 microvascular features at three scales of detail, i.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany.
The analysis of vascular morphology and functionality enables the assessment of disease activity and therapeutic effects in various pathologies. Raster-scanning optoacoustic mesoscopy (RSOM) is an imaging modality that enables the visualization of superficial vascular networks in vivo. In murine models of colitis, deep vascular networks in the colon wall can be visualized by transrectal absorber guide raster-scanning optoacoustic mesoscopy (TAG-RSOM).
View Article and Find Full Text PDFPhys Med Biol
September 2024
Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The formation of functional vasculature in solid tumours enables delivery of oxygen and nutrients, and is vital for effective treatment with chemotherapeutic agents. Longitudinal characterisation of vascular networks can be enabled using mesoscopic photoacoustic imaging, but requires accurate image co-registration to precisely assess local changes across disease development or in response to therapy. Co-registration in photoacoustic imaging is challenging due to the complex nature of the generated signal, including the sparsity of data, artefacts related to the illumination/detection geometry, scan-to-scan technical variability, and biological variability, such as transient changes in perfusion.
View Article and Find Full Text PDFPhotoacoustics
August 2024
Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
Microcirculatory dysfunction has been observed in the dermal white adipose tissue (dWAT) and subcutaneous white adipose tissue (scWAT) of obese humans and has been proposed as an early prediction marker for cardio-metabolic disease progression. visualization and longitudinal monitoring of microvascular remodeling in these tissues remains challenging. We compare the performance of two optoacoustic imaging methods, i.
View Article and Find Full Text PDFPhotoacoustics
August 2024
A⁎STAR Skin Research Labs (A⁎SRL), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Republic of Singapore.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!