A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep-E: A Fully-Dense Neural Network for Improving the Elevation Resolution in Linear-Array-Based Photoacoustic Tomography. | LitMetric

Linear-array-based photoacoustic tomography has shown broad applications in biomedical research and preclinical imaging. However, the elevational resolution of a linear array is fundamentally limited due to the weak cylindrical focus of the transducer element. While several methods have been proposed to address this issue, they have all handled the problem in a less time-efficient way. In this work, we propose to improve the elevational resolution of a linear array through Deep-E, a fully dense neural network based on U-net. Deep-E exhibits high computational efficiency by converting the three-dimensional problem into a two-dimension problem: it focused on training a model to enhance the resolution along elevational direction by only using the 2D slices in the axial and elevational plane and thereby reducing the computational burden in simulation and training. We demonstrated the efficacy of Deep-E using various datasets, including simulation, phantom, and human subject results. We found that Deep-E could improve elevational resolution by at least four times and recover the object's true size. We envision that Deep-E will have a significant impact in linear-array-based photoacoustic imaging studies by providing high-speed and high-resolution image enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161237PMC
http://dx.doi.org/10.1109/TMI.2021.3137060DOI Listing

Publication Analysis

Top Keywords

linear-array-based photoacoustic
12
elevational resolution
12
neural network
8
photoacoustic tomography
8
resolution linear
8
linear array
8
improve elevational
8
deep-e
6
resolution
5
elevational
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!