The question of whether biological populations survive or are eventually driven to extinction has long been examined using mathematical models. In this work, we study population survival or extinction using a stochastic, discrete lattice-based random walk model where individuals undergo movement, birth and death events. The discrete model is defined on a two-dimensional hexagonal lattice with periodic boundary conditions. A key feature of the discrete model is that crowding effects are introduced by specifying two different crowding functions that govern how local agent density influences movement events and birth/death events. The continuum limit description of the discrete model is a nonlinear reaction-diffusion equation, and we focus on crowding functions that lead to linear diffusion and a bistable source term that is often associated with the strong Allee effect. Using both the discrete and continuum modelling tools, we explore the complicated relationship between the long-term survival or extinction of the population and the initial spatial arrangement of the population. In particular, we study different spatial arrangements of initial distributions: (i) a well-mixed initial distribution where the initial density is independent of position in the domain; (ii) a vertical strip initial distribution where the initial density is independent of vertical position in the domain; and, (iii) several forms of two-dimensional initial distributions where the initial population is distributed in regions with different shapes. Our results indicate that the shape of the initial spatial distribution of the population affects extinction of bistable populations. All software required to solve the discrete and continuum models used in this work are available on GitHub .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-021-00974-5 | DOI Listing |
Food Res Int
February 2025
Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, Australia. Electronic address:
Sustainable seaweed value chains necessitate accurate biomass biochemical characterisation that leads to product development, geographical authentications and quality and sustainability assurances. Underutilised yet abundantly available seaweed species require a thorough investigation of biochemical characteristics prior to their valorisation. Abundantly available Australian seaweed species lack such comprehensive investigations within the global seaweed industrial value chains.
View Article and Find Full Text PDFBMC Biol
January 2025
Research Office, City University of Hong Kong (Dongguan), Dongguan, 523000, China.
Background: Recent advancements in single-cell RNA sequencing have greatly expanded our knowledge of the heterogeneous nature of tissues. However, robust and accurate cell type annotation continues to be a major challenge, hindered by issues such as marker specificity, batch effects, and a lack of comprehensive spatial and interaction data. Traditional annotation methods often fail to adequately address the complexity of cellular interactions and gene regulatory networks.
View Article and Find Full Text PDFSci Rep
January 2025
School Geography & Environmental Sciences, Ulster University, Coleraine, UK.
High costs and project-based (short-term) financing mean that coastal engineering projects are often undertaken in the absence of appropriate post-construction monitoring programmes. Consequently, the performance of shoreline-stabilizing structures or beach nourishments cannot be properly quantified. Given the high value of beaches and the increase in erosion problems and coastal engineering responses, managers require as much accurate data as possible to support efficient decision-making.
View Article and Find Full Text PDFMethods
January 2025
School of Design, Hunan University, Changsha, 410082, China. Electronic address:
The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to localize myocardial infarction (MI) that is characterized by abnormal waveform patterns on the ECG. MI is a serious cardiovascular disease, and accurate, timely diagnosis is crucial for preventing severe outcomes. Current ECG analysis methods mainly rely on intra- and inter-lead feature extraction, but most models overlook the medical knowledge relevant to disease diagnosis.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.
Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!