AI Article Synopsis

  • Hand, foot and mouth disease (HFMD) primarily stems from the Enterovirus 71 (EV71), for which effective treatments are currently lacking.
  • This study explores a vaccine made from EV71 polypeptides combined with a novel adjuvant containing CpG oligodeoxynucleotides, aiming to boost immune response.
  • Results showed that this vaccine significantly increased antibody levels and activated specific B cells in mice, suggesting strong immunogenicity and promising potential for future HFMD vaccines.

Article Abstract

Hand foot and mouth disease (HFMD) is an infectious disease mainly caused by Enterovirus 71 (EV 71). However, the effective treatment is limited currently. The aim of this study was to investigate the activity of the vaccine including the EV71 polypeptides mixed with a novel adjuvant containing CpG oligodeoxynucleotides (CpG ODNs). After collecting mouse sera, we determined the antibody concentration in serum by enzyme-linked immunosorbent assays (ELISA). Then, CD19+CD27+ B cells in the spleen were analysed by flow cytometry. The assay revealed that a substantial increase in antibody titers was achieved. This indicates a high level of immunogenicity for peptide vaccine and the good stability of adjuvant, also suggests that the combination of vaccine and adjuvant can stimulate the production of high-level antibodies and CD19+CD27+ B lymphocytes in mice. Furthermore, the antibody could effectively identify EV71 inactivated virus. The results demonstrated that the autonomous construction of EV71 polypeptide vaccine had a good immunogenicity. Moreover, the peptide vaccine injection with a novel adjuvant, which is easy to prepare, could cause a high antibody level of EV71 and shown a good application prospect.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femspd/ftab057DOI Listing

Publication Analysis

Top Keywords

polypeptide vaccine
8
vaccine adjuvant
8
novel adjuvant
8
immunogenicity peptide
8
peptide vaccine
8
vaccine good
8
vaccine
6
adjuvant
5
ev71
5
novel polypeptide
4

Similar Publications

The sensitivity of human glioblastoma cells to virus-mediated oncolysis was investigated on five patient-derived cell lines. Primary glioblastoma cells (Gbl13n, Gbl16n, Gbl17n, Gbl25n, and Gbl27n) were infected with tenfold serial dilutions of the Leningrad-3 strain of the mumps virus, and virus reproduction and cytotoxicity were monitored for 96-120 h. Immortalized human non-tumor NKE cells were used as controls to determine the virus specificity.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a DNA virus that has significantly impacted the global swine industry. Currently, there are no effective therapies or vaccines against ASFV. Stress granules (SGs), known for their antiviral properties, are not induced during ASFV infection, even though reactive oxygen species (ROS) are generated.

View Article and Find Full Text PDF

Telomerase-based vaccines: a promising frontier in cancer immunotherapy.

Cancer Cell Int

December 2024

Department of Chemistry, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

Telomerase, an enzyme crucial for maintaining telomere length, plays a critical role in cellular immortality and is overexpressed in most cancers. This ubiquitous presence makes telomerase, and specifically its catalytic subunit, human telomerase reverse transcriptase (hTERT), an attractive target for cancer immunotherapy. This review explores the development and application of telomerase-based vaccines, focusing on DNA and peptide-based approaches.

View Article and Find Full Text PDF

Endometrial cancer (EC) with Mismatch Repair deficiency (MMRd) is characterized by the accumulation of insertions/deletions at microsatellite sites. These mutations lead to the synthesis of frameshift peptides (FSPs) that represent tumor-specific neoantigens (nAg) proved to be shared across patients/tumors with MMRd. In this study, we explored the feasibility of a nAg-based cancer vaccination design in EC with MMRd.

View Article and Find Full Text PDF

The Landmark Series: Cancer Vaccines for Solid Tumors.

Ann Surg Oncol

December 2024

Department of Surgery/Division of Surgical Oncology and the Human Immune Therapy Center, Cancer Center, University of Virginia, Charlottesville, VA, USA.

Immunotherapy has become an integral part of the treatment for solid tumors. Cancer vaccines represent a potentially powerful class of immunotherapeutic agents to drive antitumor immunity. Cancer vaccine development involves selecting immunogenic target antigens expressed by tumor cells that can be effectively delivered for uptake by antigen-presenting cells to generate a robust adaptive immune response against tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!