Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Drusen are dynamic sub-RPE deposits that are risk factors for late-stage age-related macular degeneration (AMD). Here we show a new imaging method using flood-illumination adaptive optics (FIAO) that reveal drusen with high contrast and resolution.
Methods: A fovea-centered 4° × 4° FIAO image and eight surrounding images with gaze displaced by ±2° vertically and horizontally were acquired. Clinical color fundus and spectral-domain optical coherence tomography were acquired for clinical grading and comparison. Custom software registered overlapping FIAO images and fused the data statistically to generate a fovea-centered 4° × 4° gaze-dependent image. Our dataset included 15 controls (aged 31-72) and 182 eyes from 104 AMD patients (aged 56-92), graded as either normal aging (n = 7), and early (n = 12), intermediate (n = 108) and late AMD (n = 42); 27 had subretinal drusenoid deposits (SDDs), and 83 were imaged longitudinally.
Results: No gaze varying structures were detected in young eyes. In aging eyes with no evidence of age-related changes, putative drusen <20 µm in diameter were visible. Gaze-dependent images revealed more drusen and many smaller drusen than visible in color fundus images. Longitudinal images showed expansion and fusion of drusen. SDDs were lower contrast, and RPE atrophy did not yield a consistent signal.
Conclusions: Gaze-dependent imaging in a commercially available FIAO fundus camera combined with image registration and postprocessing permits visualization of drusen and their progression with high contrast and resolution.
Translational Relevance: This new technique offers promise as a robust and sensitive method to detect, map, quantify, and monitor the dynamics of drusen in aging and AMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709936 | PMC |
http://dx.doi.org/10.1167/tvst.10.14.19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!