We describe a gold-catalyzed cyclization of 1-(2'-azidoaryl)propargylsulfonamides for the synthesis of 3-sulfonamidoquinolines, featuring a rare and highly selective 1,2- migration. The key α-imino gold carbene intermediate is generated through an intramolecular nucleophilic attack of the azide group to the Au-activated triple bonds in a 6-endo-dig manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c02450 | DOI Listing |
Chem Asian J
January 2025
Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto-SP, 14040-903, Brazil.
Devising advanced protocols to avoid harsh oxidants is of paramount interest in gold catalyzed redox reactions. To address this issue, electrochemical oxidation of precatalytic Au complexes to catalytically active Au in situ species has started to emerge as a potential alternative. Such endeavours not only unlocked the possibility of direct anodic oxidation of Au to Au, but also enables stepwise oxidation of Au to Au to Au through the mediation of electro-generated organic radicals.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium.
An in-depth experimental and computational study to rationalize the mechanism underlying the gold-catalyzed intramolecular hydroalkylation of ynamides to indenes is reported. Evaluating the reactivity of a set of deuterated ynamides and gold complexes allowed to get valuable insights into the mechanism of this reaction, while DFT calculations allowed to determine a plausible reaction pathway for this unprecedented transformation. This pathway involves the activation of the ynamide followed by a [1,5]-hydride shift from the highly reactive, in situ generated keteniminium ion, and a subsequent cyclization before deprotonation followed by a final protodeauration.
View Article and Find Full Text PDFNat Commun
December 2024
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.
View Article and Find Full Text PDFChemistry
December 2024
Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
Novel fused phenazines were synthesized through a combination of gold-catalyzed hydroamination and cascade cyclization reactions towards azaacenes. In total, 30 new compounds were synthesized and investigated with respect to their structural and optoelectronic properties. In solution, these targets exhibit strong green to red emission, with quantum yields of up to 60 %.
View Article and Find Full Text PDFOrg Lett
December 2024
Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica "Enrique Moles", Unidad Asociada al C.S.I.C., Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
Herein, we report a gold-catalyzed propargylation of chromone derivatives by propargylsilanes. Chromones are synergistically activated by the silylium cation resulting from the gold activation of the propargylsilane. The reaction exclusively occurs at the C2-position of the chromone, and a single diastereoisomer is formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!