High-Performance-Integrated Stretchable Supercapacitors Based on a Polyurethane Organo/Hydrogel Electrolyte.

ACS Appl Mater Interfaces

Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Published: January 2022

Stretchable supercapacitors (SSCs) are promising energy storage devices for emerging wearable electronics. However, the low-energy density and poor deformation performance are still a challenge. Herein, an amphiphilic polyurethane-based organo/hydrogel electrolyte (APUGE) with a HO/AN-in-salt (HO/AN-NaClO) is prepared for the first time. The as-prepared APUGE shows a wide voltage window (∼2.3 V), good adhesion, and excellent resilience. In addition, the intrinsically stretchable electrodes are prepared by coating the activated carbon slurry onto the PU/carbon black/MWCNT conductive elastic substrate. Based on the strong interface adhesion of the PU matrix, the as-assembled SSC delivers high-energy density (5.65 mW h cm when the power density is 0.0256 W cm) and excellent deformation stability with 94.5% capacitance retention after 500 stretching cycles at 100% strain. This fully integrated construction concept is expected to be extended to multisystem stretchable metal ion batteries, stretchable lithium-sulfur batteries, and other stretchable energy storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c17186DOI Listing

Publication Analysis

Top Keywords

stretchable supercapacitors
8
organo/hydrogel electrolyte
8
energy storage
8
storage devices
8
batteries stretchable
8
stretchable
5
high-performance-integrated stretchable
4
supercapacitors based
4
based polyurethane
4
polyurethane organo/hydrogel
4

Similar Publications

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

A versatile, highly stretchable, and anti-freezing alginate/polyacrylamide/polyaniline multi-network hydrogel for flexible strain sensors and supercapacitors.

Int J Biol Macromol

February 2025

Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China. Electronic address:

Conductive hydrogels have great potential as electrolyte materials for flexible strain sensors and supercapacitors. However, it remains a challenge to develop multifunctional hydrogels with excellent frost resistance, toughness, ionic conductivity, and electrochemical properties using simple methods. Herein, a "chemical-physical-ionic" cross-linked sodium alginate/polyacrylamide/polyaniline (SA/PAM/Ca/PANI) multi-network hydrogel was developed by in situ polymerization of aniline monomer within a Ca-crosslinked SA/PAM hydrogel network.

View Article and Find Full Text PDF

Stretchable supercapacitors are essential components in wearable electronics due to their low heat generation and seamless integration capabilities. Thermoplastic polyurethane elastomers, recognized for their dynamic hydrogen-bonding structure, exhibit excellent stretchability, making them well-suited for these applications. This study introduces fluorine-based interactions in the hard segments of thermoplastic polyurethanes, resulting in polyurethanes with a low elastic modulus, high fracture strength, exceptional fatigue resistance, and self-healing properties.

View Article and Find Full Text PDF

Mechanically robust and anisotropic conductive hydrogels have emerged as crucial components in the field of flexible electronic devices, since they possess high mechanical properties and intelligent sensing capabilities. However, the hydrogels often swell on exposure to aqueous medium because of their hydrophilicity, which compromises their mechanical properties. Additionally, the hydrogels' isotropic polymeric networks demonstrate isotropic ion transport, which significantly diminishes the sensing capabilities of electrical devices based on hydrogels.

View Article and Find Full Text PDF

Gradient-Layered MXene/Hollow Lignin Nanospheres Architecture Design for Flexible and Stretchable Supercapacitors.

Nanomicro Lett

October 2024

Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, NanJing Forestry University, Nanjing, 210037, People's Republic of China.

With the rapid development of flexible wearable electronics, the demand for stretchable energy storage devices has surged. In this work, a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres (HLNPs)-intercalated two-dimensional transition metal carbide (TiCT MXene) for fabricating highly stretchable and durable supercapacitors. By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient, a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!