Rechargeable Mg/S batteries have the potential to provide a compelling battery for a range of applications owing to their high capacity and gravimetric energy density, safety, and low-cost construction. However, the Mg/S energy storage is not widely developed and deployed due to technical challenges, which include short cycle lifespan and lack of suitable electrolyte. To study the microstructure degradation of Mg/S batteries, multiscale X-ray tomography, an inherently nondestructive method, is performed on dismantled Swagelok Mg/S cells comprising a graphene-sulfur cathode and a super-P separator. For the first time, 3D microstructure visualization and quantification reveal the dissolution (volume fraction decreases from 13.5% to 0.7%, surface area reduces from 2.91 to 1.74 µm µm ) and agglomeration of sulfur particles, and the carbon binder densification after 10 cycles. Using tomography data, the image-based simulations are then performed. The results show that the insoluble polysulfides can inevitably block the Mg transportation via shuttle effect. The representative volume should exceed 8200 µm to represent bulk cathode. This work elucidates that the Mg/S cell performance is significantly affected by microstructural degradation, and moreover demonstrates how multiscale and multimodal characterization can play an indispensable role in developing and optimizing the Mg/S electrode design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202001193 | DOI Listing |
Cogn Neurodyn
December 2025
Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu India.
Autism spectrum disorder (ASD) is one of the complicated neurodevelopmental disorders that impacts the daily functioning and social interactions of individuals. It includes diverse symptoms and severity levels, making it challenging to diagnose and treat efficiently. Various deep learning (DL) based methods have been developed for diagnosing ASD, which rely heavily on behavioral assessment.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.
Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen University, Taoyuan Rd No. 89, Nanshan District, Shenzhen 518000, Guangdong, China (H.H., Z.D., Y.Q.); Medical AI Laboratory and Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China (J.M., R.L., B.H.); Department of Medical Imaging, People's Hospital of Longhua, Shenzhen, Guangdong, China (X.P., Y.Z.); and Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China (D.Z., G.H.).
Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China.
Breast cancer (BC) is one of the most lethal cancers worldwide, and its early diagnosis is critical for improving patient survival rates. However, the extraction of key information from complex medical images and the attainment of high-precision classification present a significant challenge. In the field of signal processing, texture-rich images typically exhibit periodic patterns and structures, which are manifested as significant energy concentrations at specific frequencies in the frequency domain.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany (T.L., B.E.B., A. Schulz, R.E., K.R.R., K.T., G.H., M.P., A. Schuster); German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany (T.L., B.E.B., A. Schulz, R.E., K.R.R., K.T., G.H., M.P., A. Schuster); Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass (A. Schulz); Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany (S.J.B.); German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany (S.J.B.); FORUM Radiology, Rosdorf, Germany (J.T.K.); Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany (G.H.); and FORUM Cardiology, Rosdorf, Germany (A. Schuster).
Purpose To assess the prognostic implications of cardiac MRI-derived imaging markers in individuals with severe aortic stenosis (AS). Materials and Methods This prospective study (German Clinical Trials Register, DRKS00024479) enrolled individuals with severe AS who underwent cardiac MRI before transcatheter aortic valve replacement (TAVR) from January 2017 to March 2022. Image analyses included myocardial volumes, cardiac MRI feature tracking-derived left atrial (LA) and right atrial (RA) as well as left ventricular (LV) and right ventricular (RV) strain, myocardial T1 mapping, and late gadolinium enhancement analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!