Deep Learning-Enhanced Nanopore Sensing of Single-Nanoparticle Translocation Dynamics.

Small Methods

The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.

Published: July 2021

Noise is ubiquitous in real space that hinders detection of minute yet important signals in electrical sensors. Here, the authors report on a deep learning approach for denoising ionic current in resistive pulse sensing. Electrophoretically-driven translocation motions of single-nanoparticles in a nano-corrugated nanopore are detected. The noise is reduced by a convolutional auto-encoding neural network, designed to iteratively compare and minimize differences between a pair of waveforms via a gradient descent optimization. This denoising in a high-dimensional feature space is demonstrated to allow detection of the corrugation-derived wavy signals that cannot be identified in the raw curves nor after digital processing in frequency domains under the given noise floor, thereby enabled in-situ tracking to electrokinetic analysis of fast-moving single- and double-nanoparticles. The ability of the unlabeled learning to remove noise without compromising temporal resolution may be useful in solid-state nanopore sensing of protein structure and polynucleotide sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202100191DOI Listing

Publication Analysis

Top Keywords

nanopore sensing
8
deep learning-enhanced
4
learning-enhanced nanopore
4
sensing single-nanoparticle
4
single-nanoparticle translocation
4
translocation dynamics
4
noise
4
dynamics noise
4
noise ubiquitous
4
ubiquitous real
4

Similar Publications

Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

ACS Nano

January 2025

Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores.

Talanta

January 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.

View Article and Find Full Text PDF

Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator.

View Article and Find Full Text PDF

The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!