A Gas-Phase Migration Strategy to Synthesize Atomically Dispersed Mn-N-C Catalysts for Zn-Air Batteries.

Small Methods

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

Published: June 2021

Mn and N codoped carbon materials are proposed as one of the most promising catalysts for the oxygen reduction reaction (ORR) but still confront a lot of challenges to replace Pt. Herein, a novel gas-phase migration strategy is developed for the scale synthesis of atomically dispersed Mn and N codoped carbon materials (g-SA-Mn) as highly effective ORR catalysts. Porous zeolitic imidazolate frameworks serve as the appropriate support for the trapping and anchoring of Mn-containing gaseous species and the synchronous high-temperature pyrolysis process results in the generation of atomically dispersed Mn-N active sites. Compared to the traditional liquid phase synthesis method, this unique strategy significantly increases the Mn loading and enables homogeneous dispersion of Mn atoms to promote the exposure of Mn-N active sites. The developed g-SA-Mn-900 catalyst exhibits excellent ORR performance in the alkaline media, including a high half-wave potential (0.90 V vs reversible hydrogen electrode), satisfactory durability, and good catalytic selectivity. In the practical application, the Zn-air battery assembled with g-SA-Mn-900 catalysts shows high power density and prominent durability during the discharge process, outperforming the commercial Pt/C benchmark. Such a gas-phase synthetic methodology offers an appealing and instructive guide for the logical synthesis of atomically dispersed catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202100024DOI Listing

Publication Analysis

Top Keywords

atomically dispersed
16
gas-phase migration
8
migration strategy
8
codoped carbon
8
carbon materials
8
synthesis atomically
8
mn-n active
8
active sites
8
catalysts
5
strategy synthesize
4

Similar Publications

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.

View Article and Find Full Text PDF

Purpose: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a new cancer treatment modality that employs radium-224-loaded metal sources implanted in solid tumors to disperse alpha-emitting atoms within a therapeutic "kill-zone" of a few millimeters around each source. Preclinical studies have demonstrated tumor growth delay in various cancer types, including glioblastoma multiforme, and the method is used in clinical trials for patients with skin and head and neck cancer. This study aims to assess the safety and feasibility of implementing Alpha DaRT for brain tumor treatment in a large animal model.

View Article and Find Full Text PDF

Many-body van der Waals interactions in multilayer structures studied by atomic force microscopy.

Nat Commun

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China.

Van der Waals interaction in multilayer structures was predicted to be of many-body character, almost in parallel with the establishment of Lifshitz theory. However, the diminishing interaction between layers separated by a finite-thickness intermediate layer prevents experimental verification of the many-body nature. Here we verify the substrate contribution at the adhesion between the atomic force microscopy tip and the supported graphene, by taking advantage of the atomic-scale proximity of two objects separated by graphene.

View Article and Find Full Text PDF

Elucidating Manganese Single-Atom Doping: Strategies for Fluorescence Enhancement in Water-Soluble Red-Emitting Carbon Dots and Applications for FL/MR Dual Mode Imaging.

Adv Sci (Weinh)

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.

The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!