Photoelectrochemical (PEC) solar-driven hydrogen production is a promising route to convert solar energy into chemical energy using semiconductors as active materials. However, the performance is still far from satisfactory due to a limited absorption range and rapid charge recombination. Compared to 3D semiconductors, 0D/2D nanohybrids may exhibit better PEC performance, due to the formation of an intimate interface between the two semiconductors that can inhibit carrier recombination. Herein, a photoelectrode based on a 0D/2D heterojunction is constructed by 0D metal chalcogenide quantum dots (QDs) and hierarchical 2D Zn-MoS nanosheets (NSs). The effect of PbS, CdS, and their composite PbS@CdS QDs is analyzed by depositing them onto Zn-MoS NSs using an in situ process. This distinctive heterojunction can leverage the light harvesting capabilities of QDs with the catalytic performance of Zn-MoS . Compared to Zn-MoS , Zn-MoS /PbS, and Zn-MoS /CdS, the obtained 0D/2D heterostructure based on the composite Zn-MoS /PbS@CdS has a significantly enhanced photocurrent. The synergistic effect between 0D/2D heterojunction, the extended absorption range of QDs, and the strong coupling and band alignment between them lead to superior solar-driven PEC performance. This work can provide a new platform to construct multifunctional 0D/2D nanohybrids for optoelectronic applications, not limited to PEC devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202100109 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
A metamaterial absorber capable of swiftly altering its electromagnetic response in the microwave range offers adaptability to changing environments, such as tunable stealth capabilities. Inspired by the chameleon's ability to change color through the structural transformation of photonic lattice crystals, which shift the bandgaps of reflection and transmission of visible light, we designed a crisscross structure that transforms from an expanded to a collapsed form. This transformation enables a switch between broadband absorption and peak transmission in the microwave range (4 to 18 gigahertz).
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
Photocatalytic reactive oxygen species (ROS) evolution with BiOI still suffers from sluggish charge carrier dynamics and limited light absorption. Herein, abundant oxygen vacancies (OVs) were introduced into the microflower-like BiOI, and its ROS generation toward organic dye degradation under the synergistic effect of visible light and ultrasound irradiation was investigated. Benefiting from the broadened visible-light absorption range, stronger piezoresponse, and higher carrier transport efficiency in OV-enriched BiOI (2-PEG-BiOI), both its photocatalytic and piezocatalytic degradations were improved.
View Article and Find Full Text PDFHIV Med
January 2025
Division of Infectious Diseases, St. Michael's Hospital, Toronto, Ontario, Canada.
Objective: To measure concentrations of tenofovir diphosphate (TFV-DP) in dried blood spots (DBS) among individuals taking tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC) or tenofovir alafenamide plus emtricitabine (TAF/FTC) who were scheduled to undergo or had already undergone bariatric surgery.
Methods: We enrolled pre-exposure prophylaxis (PrEP) users attending clinics in Toronto or Ottawa who were undergoing or had undergone bariatric surgery. After participants completed a minimum of 7 days of consecutive PrEP dosing, we collected DBS samples immediately before they administered their next daily dose of PrEP.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!