A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent Progress in Flexible Microstructural Pressure Sensors toward Human-Machine Interaction and Healthcare Applications. | LitMetric

Recent Progress in Flexible Microstructural Pressure Sensors toward Human-Machine Interaction and Healthcare Applications.

Small Methods

Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China.

Published: March 2021

With the rapid growth of artificial intelligence, wearable electronic devices have caught intensive research interest recently. Flexible sensors, as the significant part of them, have become the focus of research. Particularly, flexible microstructural pressure sensors (FMPSs) have attracted extensive attention because of their controllable shape, small size, and high sensitivity. Microstructures are of great significance to improve the sensitivity and response time of FMPSs. The FMPSs present great application prospects in medical health, human-machine interaction, electronic products, and so on. In this review, a series of microstructures (e.g., wave, pillar, and pyramid shapes) which have been elaborately designed to effectively enhance the sensing performance of FMPSs are introduced in detail. Various fabrication strategies of these FMPSs are comprehensively summarized, including template (e.g., silica, anodic aluminum oxide, and bionic patterns), pre-stressing, and magnetic field regulation methods. In addition, the materials (e.g., carbon, polymer, and piezoelectric materials) used to prepare FMPSs are also discussed. Moreover, the potential applications of FMPSs in human-machine interaction and healthcare fields are emphasized as well. Finally, the advantages and latest development of FMPSs are further highlighted, and the challenges and potential prospects of high-performance FMPSs are outlined.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202001041DOI Listing

Publication Analysis

Top Keywords

human-machine interaction
12
fmpss
9
flexible microstructural
8
microstructural pressure
8
pressure sensors
8
interaction healthcare
8
progress flexible
4
sensors human-machine
4
healthcare applications
4
applications rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!