The compounds containing a thiazolidinone pharmacophore were synthesized via hetrerocylization of thiosemicarbazones with dimethyl acetylenedicarboxylate. The hybrid molecules were evaluated for anticancer activity against the human cell lines MCF-7, T47D (human breast adenocarcinoma) and HeLa (cervical cancer). Compounds showed effective cytotoxicity on MCF-7 and HeLa (GI 6.40 ± 0.10 μM/mL and GI10.30 ± 1.09 μM/mL), and compound also showed effective cytotoxicity against MCF-7 and HeLa cell lines , (GI 16.60 ± 0.21 μM/mL and GI 15.02 ± 0.14 μM/mL). These findings were comparable to cisplatin (azane;dichloroplatinum) the standard drug (GI 13.20 ± μM/mL and 15.10 μM/mL respectively) and consequently nominated for determination of the mode of cell death. The results revealed the cytotoxic effects of and by induction of apoptosis in MCF-7 and HeLa cell lines. Moreover the results were further supported by the Molecular Docking which predicts the binding interactions of the best anticancer ligands with Ribonucleotide reductase (RNR), which is essential enzyme required for de-novo synthesis of DNA precursors. Molecular dynamic simulations were also performed to determine the stability of protein-ligand complex under different simulated conditions. In addition, the computational studies including DFTs, ADMET properties suggested these compounds can act as lead molecules, for the synthesis of novel drug candidates for the treatment of specific cancer and its associated malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.2018045DOI Listing

Publication Analysis

Top Keywords

cell lines
12
mcf-7 hela
12
effective cytotoxicity
8
cytotoxicity mcf-7
8
hela cell
8
structural functional
4
functional insight
4
insight thiazolidinone
4
thiazolidinone derivatives
4
derivatives novel
4

Similar Publications

Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICI) have improved the therapeutic arsenal in outpatient oncology care; however, data on necessity of hospitalizations associated with immune-related adverse events (irAEs) are scarce. Here, we characterized hospitalizations of patients undergoing ICI, from the prospective cohort study of the immune cooperative oncology group (ICOG) Hannover.

Methods: Between 12/2019 and 06/2022, 237 patients were included.

View Article and Find Full Text PDF

Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!