With the increasing number of oncology patients and the use of chemotherapeutic agents, tumour multidrug resistance is becoming more and more prevalent. The search for new tumour treatment strategies to overcome tumour multidrug resistance is urgent. In this study, we designed GSH and ROS dual-responsive tumour-associated macrophages (TAMs)-targeted nanoparticles (NPs) for the co-delivery of the clinical first-line anti-breast cancer chemotherapy drug paclitaxel (PTX) and baicalin (Bai), which re-educates TAMs to alter their phenotype. We synthesised oligohyaluronic acid-mannose-folic acid (oHA-Man-FA, HMF) and astragalus polysaccharide-dithiodipropionic acid-paeoniflorol (APS-S-Pae, ASP), two hybrid materials that can self-assemble in water to form hybrid nanoparticles (HP-NPs) co-loaded with paclitaxel and baicalin (HP-NPs@PTX/Bai). The experimental results show that our designed hybrid nanoparticles can be specifically released in the tumour microenvironment and deliver the antitumor drug PTX as well as Bai, which reshapes the phenotype of TAMs, to the tumour site. The hybrid nanoparticles not only effectively re-educated TAMs from M2 TAM to M1 TAM, but also ameliorated the cytotoxic side effects caused by free PTX and provided better tumour suppression than free PTX and HP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1061186X.2021.2020798 | DOI Listing |
J Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells.
View Article and Find Full Text PDFPharmaceutics
January 2025
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic.
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!