The role of N6-methyladenine (mA) RNA methylation in a variety of biological processes is gradually being revealed. Here, we systematically describe the correlation between the expression pattern of mA RNA methylation regulatory factors and clinical phenotype, immunity, drug sensitivity, stem cells and prognosis in more than 10,000 samples of 33 types of cancer. The results show that there are significant differences in the expression of 20 mA RNA methylation regulatory factors in different cancers, and there was a significant correlation with the analysis indicators. In this study, the mA RNA methylation regulatory factor was found not only to potentially assist in stratifying the prognosis but also to predict or improve the sensitivity of clinical drug therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2217/fon-2021-0788DOI Listing

Publication Analysis

Top Keywords

rna methylation
16
methylation regulatory
12
regulatory factors
8
analysis expression
4
expression patterns
4
patterns clinical
4
clinical relevance
4
relevance regulators
4
regulators cancer
4
cancer types
4

Similar Publications

2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.

View Article and Find Full Text PDF

Unlabelled: RNA-driven protein aggregation leads to cellular dysregulation by sequestering regulatory proteins, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar-associated RNA and human satellite II (HSATII) repeat RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells.

View Article and Find Full Text PDF

Epitranscriptomic modifications on RNA play critical roles in stability, processing, and function, partly by influencing interactions with RNA-binding proteins and receptors. The role of post-transcriptional RNA modifications on cell-free non-coding small RNA (sRNA) remains poorly understood in disease contexts. High-density lipoproteins (HDL), which transport sRNAs, can lose their beneficial properties in atherosclerosis cardiovascular disease (ASCVD).

View Article and Find Full Text PDF

Background: Atypical teratoid rhabdoid tumor (ATRT) is the most common malignant brain tumor in infants, and more than 60% of children with ATRT die from their tumor. ATRT is associated with mutational inactivation/deletion of , a member of the SWI/SNF chromatin remodeling complex, suggesting that epigenetic events play a critical role in tumor development and progression. Moreover, disruption of SWI/SNF allows unopposed activity of epigenetic repressors, which contribute to tumorigenicity.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!